未验证 提交 8abc5333 编写于 作者: S scotty 提交者: GitHub

add autogen code support for matrix_nms. (#52479)

* add autogen code support for matrix_nms.

* update
上级 e1692dc7
......@@ -58,7 +58,6 @@ detection_library(generate_proposal_labels_op SRCS
generate_proposal_labels_op.cc)
detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc DEPS gpc)
detection_library(locality_aware_nms_op SRCS locality_aware_nms_op.cc DEPS gpc)
detection_library(matrix_nms_op SRCS matrix_nms_op.cc DEPS gpc)
detection_library(box_clip_op SRCS box_clip_op.cc box_clip_op.cu)
detection_library(yolov3_loss_op SRCS yolov3_loss_op.cc)
detection_library(box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc
......
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/kernels/funcs/detection/nms_util.h"
namespace paddle {
namespace operators {
class MatrixNMSOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(
OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
platform::CPUPlace());
}
};
class MatrixNMSOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("BBoxes",
"(Tensor) A 3-D Tensor with shape "
"[N, M, 4] represents the predicted locations of M bounding boxes"
", N is the batch size. "
"Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax], when box size equals to 4.");
AddInput("Scores",
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 2nd dimension of BBoxes. ");
AddAttr<int>(
"background_label",
"(int, default: 0) "
"The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered.")
.SetDefault(0);
AddAttr<float>("score_threshold",
"(float) "
"Threshold to filter out bounding boxes with low "
"confidence score.");
AddAttr<float>("post_threshold",
"(float, default 0.) "
"Threshold to filter out bounding boxes with low "
"confidence score AFTER decaying.")
.SetDefault(0.);
AddAttr<int>("nms_top_k",
"(int64_t) "
"Maximum number of detections to be kept according to the "
"confidences after the filtering detections based on "
"score_threshold");
AddAttr<int>("keep_top_k",
"(int64_t) "
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step.");
AddAttr<bool>("normalized",
"(bool, default true) "
"Whether detections are normalized.")
.SetDefault(true);
AddAttr<bool>("use_gaussian",
"(bool, default false) "
"Whether to use Gaussian as decreasing function.")
.SetDefault(false);
AddAttr<float>("gaussian_sigma",
"(float) "
"Sigma for Gaussian decreasing function, only takes effect "
"when 'use_gaussian' is enabled.")
.SetDefault(2.);
AddOutput("Out",
"(phi::DenseTensor) A 2-D phi::DenseTensor with shape [No, 6] "
"represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax]. "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox.");
AddOutput("Index",
"(phi::DenseTensor) A 2-D phi::DenseTensor with shape [No, 1] "
"represents the "
"index of selected bbox. The index is the absolute index cross "
"batches.");
AddOutput("RoisNum", "(Tensor), Number of RoIs in each images.")
.AsDispensable();
AddComment(R"DOC(
This operator does multi-class matrix non maximum suppression (NMS) on batched
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator decays boxes score according to the
Matrix NMS scheme.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of phi::DenseTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. Now this operator has one more
output, which is RoisNum. The size of RoisNum is N, RoisNum[i] means the number of
detected bbox for this image.
For more information on Matrix NMS, please refer to:
https://arxiv.org/abs/2003.10152
)DOC");
}
};
} // namespace operators
} // namespace paddle
DECLARE_INFER_SHAPE_FUNCTOR(matrix_nms,
MatrixNMSInferShapeFunctor,
PD_INFER_META(phi::MatrixNMSInferMeta));
namespace ops = paddle::operators;
REGISTER_OPERATOR(
matrix_nms,
ops::MatrixNMSOp,
ops::MatrixNMSOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
MatrixNMSInferShapeFunctor);
REGISTER_OP_VERSION(matrix_nms)
.AddCheckpoint(R"ROC(Upgrade matrix_nms: add a new output [RoisNum].)ROC",
paddle::framework::compatible::OpVersionDesc().NewOutput(
"RoisNum", "The number of RoIs in each image."));
......@@ -151,5 +151,12 @@ phi::KernelKey GetUpdateLossScalingExpectedKernelType(
return phi::KernelKey(dtype, ctx.GetPlace());
}
phi::KernelKey GetMatrixNmsExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr) {
return phi::KernelKey(op_ptr->IndicateVarDataType(ctx, "Scores"),
platform::CPUPlace());
}
} // namespace operators
} // namespace paddle
......@@ -40,5 +40,9 @@ phi::KernelKey GetUpdateLossScalingExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr);
phi::KernelKey GetMatrixNmsExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr);
} // namespace operators
} // namespace paddle
......@@ -878,14 +878,6 @@
func : matmul
backward : matmul_grad
- op : matrix_nms
args : (Tensor bboxes, Tensor scores, float score_threshold, int nms_top_k, int keep_top_k, float post_threshold=0., bool use_gaussian = false, float gaussian_sigma = 2.0, int background_label = 0, bool normalized = true)
output : Tensor(out), Tensor(index), Tensor(roisnum)
infer_meta :
func : MatrixNMSInferMeta
kernel :
func : matrix_nms
- op : matrix_rank
args : (Tensor x, float tol, bool hermitian=false, bool use_default_tol=true)
output : Tensor(out)
......
......@@ -1311,6 +1311,14 @@
attrs : [bool use_mkldnn = false, float scale_x = 1.0f, 'float[] scale_y = {1.0f}',
float scale_out = 1.0f, bool force_fp32_output = false]
- op : matrix_nms
inputs :
{bboxes : BBoxes, scores : Scores}
outputs :
{out : Out, index : Index, roisnum : RoisNum}
get_expected_kernel_type :
matrix_nms : GetMatrixNmsExpectedKernelType
- op : matrix_power
inputs :
x : X
......
......@@ -138,6 +138,13 @@
comment : In order to change output data type
default : 5
- op : matrix_nms
version :
- checkpoint : Upgrade matrix_nms, add a new output [RoisNum].
action :
- add_output : RoisNum
comment : The number of RoIs in each image.
- op : not_equal
version :
- checkpoint : Upgrade compare ops, add a new attribute [force_cpu]
......
......@@ -1066,6 +1066,15 @@
data_type : x
backward : masked_select_grad
- op : matrix_nms
args : (Tensor bboxes, Tensor scores, float score_threshold, int nms_top_k, int keep_top_k, float post_threshold=0., bool use_gaussian = false, float gaussian_sigma = 2., int background_label = 0, bool normalized = true)
output : Tensor(out), Tensor(index), Tensor(roisnum)
infer_meta :
func : MatrixNMSInferMeta
optional : roisnum
kernel :
func : matrix_nms
- op : matrix_power
args : (Tensor x, int n)
output : Tensor
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature MatrixNMSOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature("matrix_nms",
{"BBoxes", "Scores"},
{"score_threshold",
"nms_top_k",
"keep_top_k",
"post_threshold",
"use_gaussian",
"gaussian_sigma",
"background_label",
"normalized"},
{"Out", "Index", "RoisNum"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(matrix_nms, phi::MatrixNMSOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册