Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8a0c7e2e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8a0c7e2e
编写于
5月 03, 2018
作者:
Y
Yu Yang
提交者:
GitHub
5月 03, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10280 from reyoung/feature/add_stable_test_of_cross_entropy
Clean cross entropy
上级
4a497b82
53c27682
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
89 addition
and
137 deletion
+89
-137
paddle/fluid/operators/cross_entropy_op.cc
paddle/fluid/operators/cross_entropy_op.cc
+6
-4
paddle/fluid/operators/cross_entropy_op.cu
paddle/fluid/operators/cross_entropy_op.cu
+6
-93
paddle/fluid/operators/cross_entropy_op.h
paddle/fluid/operators/cross_entropy_op.h
+77
-40
未找到文件。
paddle/fluid/operators/cross_entropy_op.cc
浏览文件 @
8a0c7e2e
...
...
@@ -164,11 +164,13 @@ or not. But the output only shares the LoD information with input X.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
using
CPUCtx
=
paddle
::
platform
::
CPUDeviceContext
;
REGISTER_OPERATOR
(
cross_entropy
,
ops
::
CrossEntropyOp
,
ops
::
CrossEntropyOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpKernel
<
float
>
,
ops
::
CrossEntropyOpKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpKernel
<
CPUCtx
,
float
>
,
ops
::
CrossEntropyOpKernel
<
CPUCtx
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOpKernel
<
float
>
,
ops
::
CrossEntropyGradientOpKernel
<
double
>
);
ops
::
CrossEntropyGradientOpKernel
<
CPUCtx
,
float
>
,
ops
::
CrossEntropyGradientOpKernel
<
CPUCtx
,
double
>
);
paddle/fluid/operators/cross_entropy_op.cu
浏览文件 @
8a0c7e2e
...
...
@@ -14,98 +14,11 @@ limitations under the License. */
#include "paddle/fluid/operators/cross_entropy_op.h"
namespace
paddle
{
namespace
operators
{
namespace
{
template
<
typename
T
>
__global__
void
CrossEntropyGradientKernel
(
T
*
dX
,
const
T
*
dY
,
const
T
*
X
,
const
int64_t
*
label
,
const
int
N
,
const
int
D
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
idx
=
i
*
D
+
label
[
i
];
dX
[
idx
]
=
-
dY
[
i
]
/
X
[
idx
];
}
}
template
<
typename
T
>
__global__
void
SoftCrossEntropyGradientKernel
(
T
*
dX
,
const
T
*
dY
,
const
T
*
X
,
const
T
*
label
,
const
int
N
,
const
int
D
)
{
int
ids
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
ids
<
N
*
D
)
{
int
row_ids
=
ids
/
D
;
dX
[
ids
]
=
-
label
[
ids
]
*
dY
[
row_ids
]
/
X
[
ids
];
}
}
}
// namespace
template
<
typename
T
>
class
CrossEntropyOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on GPU device."
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
CrossEntropyFunctor
<
platform
::
CUDADeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
y
,
x
,
label
,
ctx
.
Attr
<
bool
>
(
"soft_label"
));
}
};
template
<
typename
T
>
class
CrossEntropyGradientOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on GPU device."
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
dy_data
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
data
<
T
>
();
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
x_data
=
x
->
data
<
T
>
();
int64_t
batch_size
=
x
->
dims
()[
0
];
int64_t
class_num
=
x
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
batch_size
*
class_num
+
block
-
1
)
/
block
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
stream
=
dev_ctx
.
stream
();
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
auto
*
label_data
=
label
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
}
else
{
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
functor
;
functor
(
dev_ctx
,
dx
,
0
);
auto
*
label_data
=
label
->
data
<
int64_t
>
();
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpCUDAKernel
<
float
>
,
ops
::
CrossEntropyOpCUDAKernel
<
double
>
);
using
CUDACtx
=
paddle
::
platform
::
CUDADeviceContext
;
REGISTER_OP_CUDA_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpKernel
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyOpKernel
<
CUDACtx
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOp
CUDAKernel
<
float
>
,
ops
::
CrossEntropyGradientOp
CUDAKernel
<
double
>
);
ops
::
CrossEntropyGradientOp
Kernel
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyGradientOp
Kernel
<
CUDACtx
,
double
>
);
paddle/fluid/operators/cross_entropy_op.h
浏览文件 @
8a0c7e2e
...
...
@@ -17,69 +17,106 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
CrossEntropyOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
CrossEntropyFunctor
<
platform
::
CPU
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
platform
::
CPU
DeviceContext
>(),
y
,
x
,
labels
,
math
::
CrossEntropyFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
y
,
x
,
labels
,
ctx
.
Attr
<
bool
>
(
"soft_label"
));
}
};
template
<
typename
T
>
class
XeSoftlabelGradFunctor
{
public:
XeSoftlabelGradFunctor
(
T
*
dx
,
const
T
*
dy
,
// NOLINT
const
T
*
x
,
// NOLINT
const
T
*
label
,
// NOLINT
size_t
num_classes
)
:
dx_
(
dx
),
dy_
(
dy
),
x_
(
x
),
label_
(
label
),
num_classes_
(
num_classes
)
{}
HOSTDEVICE
void
operator
()(
size_t
i
)
{
auto
row_ids
=
i
/
num_classes_
;
dx_
[
i
]
=
-
label_
[
i
]
*
dy_
[
row_ids
]
/
x_
[
i
];
}
private:
T
*
dx_
;
const
T
*
dy_
;
const
T
*
x_
;
const
T
*
label_
;
size_t
num_classes_
;
};
template
<
typename
T
>
class
XeGradFunctor
{
public:
XeGradFunctor
(
T
*
dx
,
const
T
*
dy
,
// NOLINT
const
T
*
x
,
// NOLINT
const
int64_t
*
label
,
// NOLINT
size_t
num_classes
)
:
dx_
(
dx
),
dy_
(
dy
),
x_
(
x
),
label_
(
label
),
num_classes_
(
num_classes
)
{}
HOSTDEVICE
void
operator
()(
size_t
sample_id
)
{
auto
x_is_true_offset
=
sample_id
*
num_classes_
+
label_
[
sample_id
];
for
(
size_t
x_offset
=
sample_id
*
num_classes_
;
x_offset
<
(
sample_id
+
1
)
*
num_classes_
;
++
x_offset
)
{
dx_
[
x_offset
]
=
x_offset
!=
x_is_true_offset
?
static_cast
<
T
>
(
0
)
:
-
dy_
[
sample_id
]
/
x_
[
x_offset
];
}
}
private:
T
*
dx_
;
const
T
*
dy_
;
const
T
*
x_
;
const
int64_t
*
label_
;
size_t
num_classes_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
CrossEntropyGradientOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
Tensor
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
class_num
=
x
->
dims
()[
1
];
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
auto
x_mat
=
EigenMatrix
<
T
>::
From
(
*
x
);
auto
dy_mat
=
EigenMatrix
<
T
>::
From
(
*
dy
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
label
);
auto
dx_mat
=
EigenMatrix
<
T
>::
From
(
*
dx
);
dx_mat
.
device
(
*
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>()
.
eigen_device
())
=
-
(
lbl_mat
*
dy_mat
.
broadcast
(
Eigen
::
DSizes
<
int64_t
,
2
>
(
1
,
class_num
))
/
x_mat
);
XeSoftlabelGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
label
->
data
<
T
>
(),
static_cast
<
size_t
>
(
class_num
));
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
.
template
device_context
<
DeviceContext
>(),
static_cast
<
size_t
>
(
dx
->
numel
()));
for_range
(
functor
);
}
else
{
int64_t
batch_size
=
x
->
dims
()[
0
];
const
T
*
dy_data
=
dy
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
functor
;
functor
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
dx
,
0
);
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
PADDLE_ASSERT
(
label_data
[
i
]
>=
0
||
label_data
[
i
]
<
class_num
);
int64_t
index
=
i
*
class_num
+
label_data
[
i
];
dx_data
[
index
]
=
math
::
TolerableValue
<
T
>
()(
-
dy_data
[
i
]
/
x_data
[
index
]);
}
XeGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
label
->
data
<
int64_t
>
(),
static_cast
<
size_t
>
(
class_num
));
platform
::
ForRange
<
DeviceContext
>
for_range
(
ctx
.
template
device_context
<
DeviceContext
>(),
static_cast
<
size_t
>
(
dy
->
numel
()));
for_range
(
functor
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录