Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
89f2c652
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
89f2c652
编写于
1月 05, 2023
作者:
S
sneaxiy
提交者:
GitHub
1月 05, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove paddle.fluid.distributed (#49517)
上级
5defefd6
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
0 addition
and
3345 deletion
+0
-3345
python/paddle/fluid/distributed/__init__.py
python/paddle/fluid/distributed/__init__.py
+0
-12
python/paddle/fluid/distributed/downpour.py
python/paddle/fluid/distributed/downpour.py
+0
-200
python/paddle/fluid/distributed/fleet.py
python/paddle/fluid/distributed/fleet.py
+0
-82
python/paddle/fluid/distributed/helper.py
python/paddle/fluid/distributed/helper.py
+0
-91
python/paddle/fluid/distributed/node.py
python/paddle/fluid/distributed/node.py
+0
-196
python/paddle/fluid/distributed/ps_instance.py
python/paddle/fluid/distributed/ps_instance.py
+0
-160
python/paddle/fluid/distributed/ps_pb2.py
python/paddle/fluid/distributed/ps_pb2.py
+0
-2602
python/setup.py.in
python/setup.py.in
+0
-1
setup.py
setup.py
+0
-1
未找到文件。
python/paddle/fluid/distributed/__init__.py
已删除
100644 → 0
浏览文件 @
5defefd6
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
python/paddle/fluid/distributed/downpour.py
已删除
100644 → 0
浏览文件 @
5defefd6
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
.node
import
DownpourServer
from
.node
import
DownpourWorker
from
..backward
import
append_backward
import
ps_pb2
as
pslib
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table
from
paddle.fluid.distribute_lookup_table
import
(
find_distributed_lookup_table_inputs
,
)
from
paddle.fluid.distribute_lookup_table
import
(
find_distributed_lookup_table_outputs
,
)
from
google.protobuf
import
text_format
class
DownpourSGD
:
r
"""
Distributed optimizer of downpour stochastic gradient descent
Standard implementation of Google's Downpour SGD
in Large Scale Distributed Deep Networks
Args:
learning_rate (float): the learning rate used to update parameters. \
Can be a float value
Examples:
.. code-block:: python
opt = fluid.DistributedOptimizer(sgd_opt)
opt.minimize()
downpour_sgd = fluid.distributed.DownpourSGD(learning_rate=0.2)
downpour_sgd.minimize(cost)
"""
def
__init__
(
self
,
learning_rate
=
0.001
,
window
=
1
):
# todo(guru4elephant): add more optimizers here as argument
# todo(guru4elephant): make learning_rate as a variable
self
.
learning_rate_
=
learning_rate
self
.
window_
=
window
self
.
type
=
"downpour"
self
.
data_norm_name
=
[
".batch_size"
,
".batch_square_sum"
,
".batch_sum"
,
".batch_size@GRAD"
,
".batch_square_sum@GRAD"
,
".batch_sum@GRAD"
,
]
def
minimize
(
self
,
losses
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
):
"""
DownpounSGD is a distributed optimizer so
that user can call minimize to generate backward
operators and optimization operators within minimize function
Args:
loss(Variable): loss variable defined by user
startup_program(Program): startup program that defined by user
parameter_list(str list): parameter names defined by users
no_grad_set(set): a set of variables that is defined by users
so that these variables do not need gradient computation
Returns:
[ps_param, worker_skipped_ops]
ps_param: parameter server protobuf desc
worker_skipped_ops: operator names that need
to be skipped during execution
"""
if
not
isinstance
(
losses
,
list
):
raise
ValueError
(
'losses is a list, just lick [model.cost]'
)
table_name
=
find_distributed_lookup_table
(
losses
[
0
].
block
.
program
)
prefetch_slots
=
find_distributed_lookup_table_inputs
(
losses
[
0
].
block
.
program
,
table_name
)
prefetch_slots_emb
=
find_distributed_lookup_table_outputs
(
losses
[
0
].
block
.
program
,
table_name
)
ps_param
=
pslib
.
PSParameter
()
server
=
DownpourServer
()
worker
=
DownpourWorker
(
self
.
window_
)
sparse_table_index
=
0
server
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
,
)
worker
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
,
)
dense_table_index
=
1
program_configs
=
[]
param_grads_list
=
[]
for
loss_index
in
range
(
len
(
losses
)):
program_config
=
ps_param
.
trainer_param
.
program_config
.
add
()
program_config
.
program_id
=
str
(
id
(
losses
[
loss_index
].
block
.
program
)
)
program_config
.
pull_sparse_table_id
.
extend
([
sparse_table_index
])
program_config
.
push_sparse_table_id
.
extend
([
sparse_table_index
])
params_grads
=
sorted
(
append_backward
(
losses
[
loss_index
],
parameter_list
,
no_grad_set
),
key
=
lambda
x
:
x
[
0
].
name
,
)
param_grads_list
.
append
(
params_grads
)
params
=
[]
grads
=
[]
data_norm_params
=
[]
data_norm_grads
=
[]
for
i
in
params_grads
:
is_data_norm_data
=
False
for
data_norm_name
in
self
.
data_norm_name
:
if
i
[
0
].
name
.
endswith
(
data_norm_name
):
is_data_norm_data
=
True
data_norm_params
.
append
(
i
[
0
])
if
not
is_data_norm_data
:
params
.
append
(
i
[
0
])
for
i
in
params_grads
:
is_data_norm_data
=
False
for
data_norm_grad
in
self
.
data_norm_name
:
if
i
[
0
].
name
.
endswith
(
data_norm_grad
):
is_data_norm_data
=
True
data_norm_grads
.
append
(
i
[
1
])
if
not
is_data_norm_data
:
grads
.
append
(
i
[
1
])
server
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
program_config
.
pull_dense_table_id
.
extend
([
dense_table_index
])
program_config
.
push_dense_table_id
.
extend
([
dense_table_index
])
if
len
(
data_norm_params
)
!=
0
and
len
(
data_norm_grads
)
!=
0
:
dense_table_index
+=
1
server
.
add_data_norm_table
(
dense_table_index
,
self
.
learning_rate_
,
data_norm_params
,
data_norm_grads
,
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
data_norm_params
,
data_norm_grads
,
)
program_config
.
pull_dense_table_id
.
extend
([
dense_table_index
])
program_config
.
push_dense_table_id
.
extend
([
dense_table_index
])
dense_table_index
+=
1
program_configs
.
append
(
program_config
)
ps_param
.
server_param
.
CopyFrom
(
server
.
get_desc
())
ps_param
.
trainer_param
.
CopyFrom
(
worker
.
get_desc
())
for
program_config
in
program_configs
:
ps_param
.
trainer_param
.
program_config
.
extend
([
program_config
])
# Todo(guru4elephant): figure out how to support more sparse parameters
# currently only support lookup_table
worker_skipped_ops
=
[
"lookup_table"
,
"lookup_table_grad"
]
ps_param
.
trainer_param
.
skip_op
.
extend
(
worker_skipped_ops
)
# all fleet operations should be defined in operators in the future
# we want to return an object here containing:
# 1) worker execution strategy
# 2) pserver execution strategy
# 3) fleet configurations
# 4) skipped operators in runtime
# 5) distributed optimization
opt_info
=
{}
opt_info
[
"trainer"
]
=
"DistMultiTrainer"
opt_info
[
"device_worker"
]
=
"DownpourSGD"
opt_info
[
"optimizer"
]
=
"DownpourSGD"
opt_info
[
"fleet_desc"
]
=
ps_param
opt_info
[
"worker_skipped_ops"
]
=
worker_skipped_ops
for
loss
in
losses
:
loss
.
block
.
program
.
_fleet_opt
=
opt_info
return
None
,
param_grads_list
python/paddle/fluid/distributed/fleet.py
已删除
100644 → 0
浏览文件 @
5defefd6
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
sys
from
..
import
core
from
.
import
ps_instance
from
google.protobuf
import
text_format
__all__
=
[
'Fleet'
]
class
Fleet
:
""" """
def
__init__
(
self
):
self
.
instance_
=
ps_instance
.
PaddlePSInstance
()
self
.
fleet_
=
core
.
FleetWrapper
()
def
stop
(
self
):
self
.
instance_
.
barrier_worker
()
if
self
.
instance
.
is_first_worker
():
self
.
fleet_
.
stop_server
()
self
.
instance_
.
barrier_worker
()
self
.
instance_
.
barrier_all
()
self
.
instance
.
finalize
()
def
init_pserver
(
self
,
opt_info
):
if
"fleet_desc"
in
opt_info
:
self
.
dist_desc_str_
=
text_format
.
MessageToString
(
opt_info
[
"fleet_desc"
]
)
self
.
dist_desc_
=
opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run distributed optimization to get opt_info first"
)
sys
.
exit
(
-
1
)
self
.
fleet_
.
init_server
(
self
.
dist_desc_str_
)
ip
=
self
.
fleet_
.
start_server
()
self
.
instance_
.
set_ip
(
ip
)
self
.
instance
.
barrier_all
()
ips
=
self
.
instance
.
gather_ips
()
self
.
fleet
.
gather_servers
(
ips
,
self
.
instance_
.
get_node_cnt
())
self
.
instance_
.
barrier_all
()
def
init_worker
(
self
,
opt_info
):
if
"fleet_desc"
in
opt_info
:
self
.
dist_desc_str_
=
text_format
.
MessageToString
(
opt_info
[
"fleet_desc"
]
)
self
.
dist_desc_
=
opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run distributed optimization to get opt_info first"
)
sys
.
exit
(
-
1
)
self
.
instance_
.
barrier_all
()
ips
=
self
.
instance
.
gather_ips
()
self
.
fleet_
.
init_worker
(
self
.
dist_desc_str_
,
ips
,
self
.
instance_
.
get_node_cnt
(),
self
.
instance
.
_rankid
,
)
self
.
instance
.
barrier_worker
()
def
init_pserver_model
(
self
):
if
self
.
instance_
.
is_first_worker
():
self
.
fleet_
.
init_model
()
self
.
instance_
.
barrier_worker
()
def
save_pserver_model
(
self
,
save_path
):
self
.
fleet_
.
save_model
(
save_path
)
python/paddle/fluid/distributed/helper.py
已删除
100644 → 0
浏览文件 @
5defefd6
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class
FileSystem
:
"""
A file system that support hadoop client desc.
Args:
fs_type (string): fs_type, for example is "afs"
user (string): hadoop param
passwd (string): hadoop param
hadoop bin (string): hadoop param
Examples:
fs = FileSystm()
"""
def
__init__
(
self
,
fs_type
=
"afs"
,
uri
=
"afs://xx"
,
user
=
None
,
passwd
=
None
,
hadoop_bin
=
""
,
):
assert
user
is
not
None
assert
passwd
is
not
None
assert
hadoop_bin
is
not
None
import
ps_pb2
as
pslib
self
.
fs_client
=
pslib
.
FsClientParameter
()
self
.
fs_client
.
uri
=
uri
self
.
fs_client
.
user
=
user
self
.
fs_client
.
passwd
=
passwd
# self.fs_client.buffer_size = 0
self
.
fs_client
.
hadoop_bin
=
hadoop_bin
# self.fs_client.afs_conf = afs_conf if not afs_conf else ""
def
get_desc
(
self
):
"""
get hadoop desc.
"""
return
self
.
fs_client
class
MPIHelper
:
"""
MPIHelper is a wrapper of mpi4py, support get_rank get_size etc.
Args:
No params
Examples:
mh = MPIHelper()
mh.get_ip()
"""
def
__init__
(
self
):
from
mpi4py
import
MPI
self
.
comm
=
MPI
.
COMM_WORLD
self
.
MPI
=
MPI
def
get_rank
(
self
):
return
self
.
comm
.
Get_rank
()
def
get_size
(
self
):
return
self
.
comm
.
Get_size
()
def
get_ip
(
self
):
import
socket
local_ip
=
socket
.
gethostbyname
(
socket
.
gethostname
())
return
local_ip
def
get_hostname
(
self
):
import
socket
return
socket
.
gethostname
()
def
finalize
(
self
):
self
.
MPI
.
Finalize
()
python/paddle/fluid/distributed/node.py
已删除
100644 → 0
浏览文件 @
5defefd6
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
ps_pb2
as
pslib
# NOTE: reduce removed in fuctools in python3
from
functools
import
reduce
class
Server
:
"""
A Server basic class.
"""
def
__init__
(
self
):
pass
class
Worker
:
"""
A Worker basic class.
"""
def
__init__
(
self
):
pass
class
DownpourServer
(
Server
):
"""
DownpourServer class is used to generate server program_desc
Args:
server: it is pslib.ServerParameter()
Examples:
server = DownpourServer()
"""
def
__init__
(
self
):
self
.
server_
=
pslib
.
ServerParameter
()
self
.
server_
.
downpour_server_param
.
service_param
.
start_server_port
=
0
self
.
server_
.
downpour_server_param
.
service_param
.
server_class
=
(
"DownpourBrpcPsServer"
)
self
.
server_
.
downpour_server_param
.
service_param
.
client_class
=
(
"DownpourBrpcPsClient"
)
self
.
server_
.
downpour_server_param
.
service_param
.
service_class
=
(
"DownpourPsService"
)
self
.
server_
.
downpour_server_param
.
service_param
.
server_thread_num
=
12
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
slot_key_vars
,
slot_value_var
):
r
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
slot_key_vars(string): slot key id
slot_value_var(string): slot key value after embedding
Returns:
return None
"""
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_class
=
"DownpourSparseTable"
table
.
type
=
pslib
.
PS_SPARSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourFeatureValueAccessor"
table
.
accessor
.
sparse_sgd_param
.
learning_rate
=
learning_rate
table
.
accessor
.
sparse_sgd_param
.
initial_g2sum
=
3
table
.
accessor
.
sparse_sgd_param
.
initial_range
=
1e-4
table
.
accessor
.
sparse_sgd_param
.
weight_bounds
.
extend
([
-
10
,
10
])
table
.
accessor
.
embedx_dim
=
8
table
.
accessor
.
embedx_threshold
=
5
table
.
accessor
.
fea_dim
=
11
table
.
accessor
.
downpour_accessor_param
.
nonclk_coeff
=
0.1
table
.
accessor
.
downpour_accessor_param
.
click_coeff
=
2
table
.
accessor
.
downpour_accessor_param
.
base_threshold
=
0.2
table
.
accessor
.
downpour_accessor_param
.
delta_threshold
=
0.15
table
.
accessor
.
downpour_accessor_param
.
delta_keep_days
=
31
table
.
accessor
.
downpour_accessor_param
.
show_click_decay_rate
=
0.999
table
.
accessor
.
downpour_accessor_param
.
delete_threshold
=
0.8
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
param_var
,
grad_var
):
r
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_class
=
"DownpourDenseTable"
table
.
type
=
pslib
.
PS_DENSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourDenseValueAccessor"
table
.
accessor
.
dense_sgd_param
.
name
=
"adam"
table
.
accessor
.
dense_sgd_param
.
adam
.
learning_rate
=
learning_rate
table
.
accessor
.
dense_sgd_param
.
adam
.
avg_decay_rate
=
0.999993
table
.
accessor
.
dense_sgd_param
.
adam
.
ada_decay_rate
=
0.9999
table
.
accessor
.
dense_sgd_param
.
adam
.
ada_epsilon
=
1e-8
table
.
accessor
.
dense_sgd_param
.
adam
.
mom_decay_rate
=
0.99
table
.
accessor
.
dense_sgd_param
.
naive
.
learning_rate
=
0.0002
fea_dim
=
0
for
param
in
filter
(
lambda
x
:
x
.
name
.
find
(
"embedding"
)
==
-
1
,
param_var
):
fea_dim
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
param
.
shape
,
1
)
table
.
accessor
.
fea_dim
=
fea_dim
def
get_desc
(
self
):
"""
Return downpour server program_desc
"""
return
self
.
server_
class
DownpourWorker
(
Worker
):
"""
DownpourWorker class is used to generate worker program_desc
Args:
window (int): push params frequency
worker: it is pslib.DownpourTrainerParameter
Examples:
worker = DownpourWorker(1)
"""
def
__init__
(
self
,
window
):
self
.
window
=
window
self
.
worker_
=
pslib
.
DownpourTrainerParameter
()
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
slot_key_vars
,
slot_value_vars
):
r
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
slot_key_vars(string): slot key id
slot_value_var(string): slot key value after embedding
Returns:
return None
"""
table
=
self
.
worker_
.
sparse_table
.
add
()
table
.
table_id
=
table_id
table
.
slot_key
.
extend
([
var
.
name
for
var
in
slot_key_vars
])
table
.
slot_value
.
extend
([
var
.
name
for
var
in
slot_value_vars
])
table
.
slot_gradient
.
extend
(
[
var
.
name
+
"@GRAD"
for
var
in
slot_value_vars
]
)
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
param_vars
,
grad_vars
):
r
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table
=
self
.
worker_
.
dense_table
.
add
()
table
.
table_id
=
table_id
table
.
dense_variable_name
.
extend
(
filter
(
lambda
x
:
x
.
find
(
"embedding"
)
==
-
1
,
[
p
.
name
for
p
in
param_vars
],
)
)
table
.
dense_gradient_variable_name
.
extend
(
filter
(
lambda
x
:
x
.
find
(
"embedding"
)
==
-
1
,
[
g
.
name
for
g
in
grad_vars
]
)
)
def
get_desc
(
self
):
"""
Return downpour worker program_desc
"""
return
self
.
worker_
python/paddle/fluid/distributed/ps_instance.py
已删除
100644 → 0
浏览文件 @
5defefd6
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
.helper
import
MPIHelper
class
PaddlePSInstance
:
"""
PaddlePSInstance class is used to generate A instance of server or worker
Args:
server_worker_mode: is a value 0 or 1, default is 1
proc_per_node: process per node, default is 2
Examples:
instance = PaddlePSInstance(1, 2)
"""
def
__init__
(
self
,
server_worker_mode
=
1
,
proc_per_node
=
2
):
self
.
dh
=
MPIHelper
()
self
.
_rankid
=
self
.
dh
.
get_rank
()
self
.
_server_worker_mode
=
server_worker_mode
self
.
_proc_per_node
=
proc_per_node
self
.
_nodes
=
self
.
dh
.
get_size
()
self
.
_ip
=
0
self
.
_worker_num
=
self
.
_nodes
*
self
.
_proc_per_node
/
2
self
.
_server_num
=
self
.
_nodes
*
self
.
_proc_per_node
/
2
self
.
_total_server_worker
=
self
.
_worker_num
+
self
.
_server_num
self
.
_node_type
=
None
# IDLE=-1, WORKER=1, SERVER=0
self
.
_set_nodetype
()
self
.
_comm
=
None
self
.
_split_comm
()
def
_set_nodetype
(
self
):
if
self
.
_server_worker_mode
==
0
:
if
self
.
_rankid
<
self
.
_server_num
:
self
.
_node_type
=
1
elif
self
.
_rankid
<
self
.
_total_server_worker
:
self
.
_node_type
=
0
else
:
self
.
_node_type
=
-
1
elif
self
.
_server_worker_mode
==
1
:
if
self
.
_rankid
<
self
.
_total_server_worker
:
if
0
==
self
.
_rankid
%
self
.
_proc_per_node
%
2
:
self
.
_node_type
=
0
else
:
self
.
_node_type
=
1
else
:
self
.
_node_type
=
-
1
else
:
self
.
_node_type
=
-
1
def
_split_comm
(
self
):
if
self
.
is_server
():
self
.
_comm
=
self
.
dh
.
comm
.
Split
(
self
.
_node_type
)
elif
self
.
is_worker
():
self
.
_comm
=
self
.
dh
.
comm
.
Split
(
self
.
_node_type
)
pass
def
get_worker_id
(
self
):
"""
Return worker index
"""
if
self
.
_server_worker_mode
==
0
:
return
self
.
_rankid
==
self
.
server_num
else
:
return
self
.
_rankid
/
self
.
_proc_per_node
def
get_server_id
(
self
):
"""
Return server index
"""
if
self
.
_server_worker_mode
==
0
:
return
self
.
rank_id
else
:
return
self
.
rank_id
/
self
.
_proc_per_node
def
is_worker
(
self
):
"""
Return instance is worker or not
"""
return
self
.
_node_type
==
1
def
is_server
(
self
):
"""
Return instance is server or not
"""
return
self
.
_node_type
==
0
def
is_first_worker
(
self
):
"""
Return instance is first worker or not
"""
return
self
.
is_worker
()
and
0
==
self
.
get_worker_id
()
def
set_ip
(
self
,
ip
):
"""
set server ip
"""
self
.
_ip
=
ip
def
gather_ips
(
self
):
"""
Return all servers and workers ip through mpi allgather
"""
self
.
_ips
=
self
.
dh
.
comm
.
allgather
(
self
.
_ip
)
return
self
.
_ips
def
get_node_cnt
(
self
):
"""
Return node cnt
"""
return
self
.
_nodes
def
get_worker_num
(
self
):
"""
Return worker num
"""
return
self
.
_worker_num
def
get_server_num
(
self
):
"""
Return server num
"""
return
self
.
_server_num
def
barrier_all
(
self
):
"""
barrier workers and servers
"""
self
.
dh
.
comm
.
barrier
()
def
barrier_worker
(
self
):
"""
barrier workers
"""
if
self
.
is_worker
():
self
.
_comm
.
barrier
()
pass
def
finalize
(
self
):
"""
MPI finalize
"""
self
.
dh
.
finalize
()
pass
if
__name__
==
"__main__"
:
instance
=
PaddlePSInstance
(
1
,
2
)
instance
.
barrier_all
()
python/paddle/fluid/distributed/ps_pb2.py
已删除
100644 → 0
浏览文件 @
5defefd6
此差异已折叠。
点击以展开。
python/setup.py.in
浏览文件 @
89f2c652
...
...
@@ -333,7 +333,6 @@ packages=['paddle',
'paddle.fluid.dygraph',
'paddle.fluid.proto',
'paddle.fluid.proto.profiler',
'paddle.fluid.distributed',
'paddle.fluid.layers',
'paddle.fluid.dataloader',
'paddle.fluid.contrib',
...
...
setup.py
浏览文件 @
89f2c652
...
...
@@ -1232,7 +1232,6 @@ def get_setup_parameters():
'paddle.fluid.dygraph'
,
'paddle.fluid.proto'
,
'paddle.fluid.proto.profiler'
,
'paddle.fluid.distributed'
,
'paddle.fluid.layers'
,
'paddle.fluid.dataloader'
,
'paddle.fluid.contrib'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录