未验证 提交 8965cee8 编写于 作者: Y Yu Yang 提交者: GitHub

Polish PrintOp (#12895)

* Polish PrintOp

* Polish PrintOp

* Polish PrintOp

* Refine test_print_op
上级 9be39bb4
......@@ -26,7 +26,7 @@ namespace paddle {
namespace framework {
template <typename T>
bool IsType(const std::type_index& type_index) {
inline bool IsType(const std::type_index& type_index) {
return type_index == std::type_index(typeid(T));
}
......
......@@ -13,14 +13,12 @@
limitations under the License. */
#include <algorithm>
#include <ctime>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/framework/variable.h"
namespace paddle {
namespace operators {
using framework::GradVarName;
#define CLOG std::cout
......@@ -35,7 +33,7 @@ struct Formater {
std::type_index dtype{typeid(const char)};
framework::LoD lod;
int summarize;
void* data{nullptr};
void *data{nullptr};
void operator()(size_t size) {
PrintMessage();
......@@ -101,7 +99,7 @@ struct Formater {
template <typename T>
void Display(size_t size) {
auto* d = reinterpret_cast<T*>(data);
auto *d = reinterpret_cast<T *>(data);
CLOG << "\tdata: ";
if (summarize != -1) {
summarize = std::min(size, (size_t)summarize);
......@@ -120,51 +118,36 @@ struct Formater {
// TODO(ChunweiYan) there should be some other printers for TensorArray
class TensorPrintOp : public framework::OperatorBase {
public:
TensorPrintOp(const std::string& type,
const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
TensorPrintOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
TensorPrintOp(const TensorPrintOp& o)
TensorPrintOp(const TensorPrintOp &o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
static_cast<const framework::OperatorBase &>(o)) {
PADDLE_THROW("Not implemented.");
}
private:
void RunImpl(const framework::Scope& scope,
const platform::Place& place) const override {
const framework::Variable* in_var_ptr = nullptr;
std::string phase(kForward);
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
const framework::Variable *in_var_ptr = nullptr;
std::string printed_var_name = "";
auto& inputs = Inputs();
if (inputs.find("In") != inputs.end() && !Inputs("In").empty()) {
in_var_ptr = scope.FindVar(Input("In"));
printed_var_name = Inputs("In").front();
} else if (inputs.find("In@GRAD") != inputs.end() &&
!Inputs("In@GRAD").empty()) {
in_var_ptr = scope.FindVar(Input("In@GRAD"));
printed_var_name = Inputs("In@GRAD").front();
phase = std::string(kBackward);
} else {
PADDLE_THROW("Unknown phase, should be forward or backward.");
}
in_var_ptr = scope.FindVar(Input("In"));
printed_var_name = Inputs("In").front();
PADDLE_ENFORCE_NOT_NULL(in_var_ptr);
auto& in_tensor = in_var_ptr->Get<framework::LoDTensor>();
auto* out_var_ptr = scope.FindVar(Output("Out"));
auto& out_tensor = *out_var_ptr->GetMutable<framework::LoDTensor>();
// Just copy data from input tensor to output tensor
// output tensor share same memory with input tensor
out_tensor.ShareDataWith(in_tensor);
out_tensor.set_lod(in_tensor.lod());
auto &in_tensor = in_var_ptr->Get<framework::LoDTensor>();
std::string print_phase = Attr<std::string>("print_phase");
if (print_phase != phase && print_phase != std::string(kBoth)) {
bool is_forward = Attr<bool>("is_forward");
if ((is_forward && print_phase == kBackward) ||
(!is_forward && print_phase == kForward)) {
return;
}
......@@ -192,7 +175,7 @@ class TensorPrintOp : public framework::OperatorBase {
formater.dtype = printed_tensor.type();
}
if (Attr<bool>("print_tensor_shape")) {
auto& dims = printed_tensor.dims();
auto &dims = printed_tensor.dims();
formater.dims.resize(dims.size());
for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i];
}
......@@ -200,7 +183,7 @@ class TensorPrintOp : public framework::OperatorBase {
formater.lod = printed_tensor.lod();
}
formater.summarize = Attr<int>("summarize");
formater.data = reinterpret_cast<void*>(printed_tensor.data<void>());
formater.data = reinterpret_cast<void *>(printed_tensor.data<void>());
formater(printed_tensor.numel());
}
......@@ -219,14 +202,14 @@ class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<bool>("print_tensor_type", "Whether to print the tensor's dtype.");
AddAttr<bool>("print_tensor_shape", "Whether to print the tensor's shape.");
AddAttr<bool>("print_tensor_lod", "Whether to print the tensor's lod.");
AddAttr<std::string>(
"print_phase",
"(string, default 'BOTH') Which phase to display including 'FORWARD' "
"'BACKWARD' and 'BOTH'.")
AddAttr<std::string>("print_phase",
"(string, default 'FORWARD') Which phase to display "
"including 'FORWARD' "
"'BACKWARD' and 'BOTH'.")
.SetDefault(std::string(kBoth))
.InEnum({std::string(kForward), std::string(kBackward),
std::string(kBoth)});
AddOutput("Out", "Output tensor with same data as input tensor.");
AddAttr<bool>("is_forward", "Whether is forward or not").SetDefault(true);
AddComment(R"DOC(
Creates a print op that will print when a tensor is accessed.
......@@ -238,40 +221,21 @@ tensor `t`.)DOC");
class InferShapeForward : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* context) const override {
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("In"), "Input(In) should not be null.");
context->ShareLoD("In", /*->*/ "Out");
context->SetOutputDim("Out", context->GetInputDim("In"));
}
};
class InferShapeBackward : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* context) const override {
PADDLE_ENFORCE(context->HasInput("In@GRAD"),
"Input(In@GRAD) should not be null.");
context->ShareLoD("In@GRAD", /*->*/ "Out");
context->SetOutputDim("Out", context->GetInputDim("In@GRAD"));
}
};
class InferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {}
};
class PrintOpProtoAndCheckGradOpMaker
: public framework::SingleGradOpDescMaker {
class PrintOpGradientMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* op_desc_ptr = new framework::OpDesc();
op_desc_ptr->SetType("print_grad");
op_desc_ptr->SetInput("In@GRAD", OutputGrad("Out"));
op_desc_ptr->SetOutput("Out", InputGrad("In"));
auto *op_desc_ptr = new framework::OpDesc();
op_desc_ptr->SetType("print");
op_desc_ptr->SetInput("In", InputGrad("In"));
op_desc_ptr->SetAttrMap(Attrs());
op_desc_ptr->SetAttr("is_forward", false);
return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
}
};
......@@ -282,6 +246,4 @@ class PrintOpProtoAndCheckGradOpMaker
namespace ops = paddle::operators;
REGISTER_OPERATOR(print, ops::TensorPrintOp, ops::PrintOpProtoAndCheckMaker,
ops::PrintOpProtoAndCheckGradOpMaker, ops::InferShapeForward,
ops::InferVarType);
REGISTER_OPERATOR(print_grad, ops::TensorPrintOp, ops::InferShapeBackward);
ops::PrintOpGradientMaker, ops::InferShapeForward);
......@@ -189,7 +189,6 @@ def Print(input,
message="The content of some_layer: ")
'''
helper = LayerHelper('print', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='print',
inputs={'In': input},
......@@ -202,9 +201,7 @@ def Print(input,
'print_tensor_shape': print_tensor_shape,
'print_tensor_lod': print_tensor_lod,
'print_phase': print_phase.upper()
},
outputs={'Out': out})
return out
})
class BlockGuard(object):
......
......@@ -35,9 +35,8 @@ class TestPrintOpCPU(unittest.TestCase):
def build_network(self, only_forward, **kargs):
x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
x.stop_gradient = False
printed = layers.Print(input=x, **kargs)
if only_forward: return printed
loss = layers.mean(printed)
layers.Print(input=x, **kargs)
loss = layers.mean(x)
append_backward(loss=loss)
return loss
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册