未验证 提交 88e27a07 编写于 作者: 光明和真理's avatar 光明和真理 提交者: GitHub

[MLU] add mlu kernel for fill_constant_batch_size_like (#43820)

上级 3a59ede9
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/operators/utils.h"
namespace paddle {
namespace operators {
template <typename T>
class FillConstantBatchSizeLikeOpMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto data_type =
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
auto float_value = ctx.Attr<float>("value");
auto str_value = ctx.Attr<std::string>("str_value");
auto force_cpu = ctx.Attr<bool>("force_cpu");
auto *out = ctx.Output<Tensor>("Out");
auto *in = ctx.Input<framework::LoDTensor>("Input");
if (in->lod().size() && ctx.Attr<int>("input_dim_idx") == 0) {
// set the correct batch size for the LoDTensor.
auto odims = out->dims();
int output_dim_idx = ctx.Attr<int>("output_dim_idx");
odims[output_dim_idx] = static_cast<int>(in->lod().back().size()) - 1;
out->mutable_data<T>(odims, ctx.GetPlace());
}
T value;
if (str_value.empty()) {
value = static_cast<T>(float_value);
} else {
// handle NaN/Inf first, which cannot be read from stream.
if (str_value == "inf") {
value = static_cast<T>(std::numeric_limits<double>::infinity());
} else if (str_value == "-inf") {
value = static_cast<T>(-std::numeric_limits<double>::infinity());
} else if (str_value == "nan") {
value = static_cast<T>(std::numeric_limits<double>::quiet_NaN());
} else {
std::stringstream convert_stream(str_value);
if (std::is_same<int64_t, T>::value) {
int64_t tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
} else {
double tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
}
}
}
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();
if (cpu_place) {
auto &dev_ctx = *pool.Get(platform::CPUPlace());
phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
out->mutable_data(platform::CPUPlace(),
framework::TransToPhiDataType(data_type));
functor(reinterpret_cast<const platform::CPUDeviceContext &>(dev_ctx),
out,
static_cast<T>(value));
} else {
out->mutable_data(ctx.GetPlace(),
framework::TransToPhiDataType(data_type));
const T *value_data = &value;
cnnlPointerMode_t pointer_mode = CNNL_POINTER_MODE_HOST;
MLUCnnlTensorDesc output_desc(*out);
MLUCnnl::Fill(
ctx, pointer_mode, value_data, output_desc.get(), GetBasePtr(out));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(
fill_constant_batch_size_like,
ops::FillConstantBatchSizeLikeOpMLUKernel<int>,
ops::FillConstantBatchSizeLikeOpMLUKernel<float>,
ops::FillConstantBatchSizeLikeOpMLUKernel<plat::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import paddle
import paddle.fluid.core as core
from paddle.static import program_guard, Program
import paddle.compat as cpt
import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid.framework import convert_np_dtype_to_dtype_
paddle.enable_static()
def fill_constant_batch_size_like(input,
shape,
value,
data_type,
input_dim_idx=0,
output_dim_idx=0,
force_cpu=False):
return paddle.fluid.layers.fill_constant_batch_size_like(
input, shape, data_type, value, input_dim_idx, output_dim_idx,
force_cpu)
class TestFillConstantBatchSizeLike(OpTest):
def setUp(self):
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.op_type = "fill_constant_batch_size_like"
self.init_shape()
self.init_value()
self.init_dtype()
self.init_force_cpu()
self.init_dim_idx()
self.inputs = {
'Input': np.random.random(self.input_shape).astype("float32")
}
self.attrs = {
'shape': self.shape,
'value': self.value,
'str_value': self.str_value,
'dtype': self.dtype,
'force_cpu': self.force_cpu,
'input_dim_idx': self.input_dim_idx,
'output_dim_idx': self.output_dim_idx
}
self.outputs = {
'Out': np.full(self.output_shape, self.output_value,
self.output_dtype)
}
def init_shape(self):
self.input_shape = [4, 5]
self.shape = [123, 92]
self.output_shape = (4, 92)
def init_value(self):
self.value = 3.8
self.str_value = ''
self.output_value = 3.8
def init_dtype(self):
self.dtype = core.VarDesc.VarType.FP32
self.output_dtype = np.float32
def init_force_cpu(self):
self.force_cpu = False
def init_dim_idx(self):
self.input_dim_idx = 0
self.output_dim_idx = 0
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantBatchSizeLike2(TestFillConstantBatchSizeLike):
def init_shape(self):
# test shape
self.input_shape = [4, 5, 6, 7]
self.shape = [10, 123, 92]
self.output_shape = (4, 123, 92)
class TestFillConstantBatchSizeLike3(TestFillConstantBatchSizeLike):
def init_value(self):
# use 'str_value' rather than 'value'
self.value = 3.8
self.str_value = '4.5'
self.output_value = 4.5
class TestFillConstantBatchSizeLike4(TestFillConstantBatchSizeLike):
def init_value(self):
# str_value = 'inf'
self.value = 3.8
self.str_value = 'inf'
self.output_value = float('inf')
class TestFillConstantBatchSizeLike5(TestFillConstantBatchSizeLike):
def init_value(self):
# str_value = '-inf'
self.value = 3.8
self.str_value = '-inf'
self.output_value = -float('inf')
class TestFillConstantBatchSizeLike6(TestFillConstantBatchSizeLike):
def init_dtype(self):
self.dtype = core.VarDesc.VarType.FP16
self.output_dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-2)
class TestFillConstantBatchSizeLike7(TestFillConstantBatchSizeLike):
def init_dtype(self):
self.dtype = core.VarDesc.VarType.INT32
self.output_dtype = np.int32
class TestFillConstantBatchSizeLike8(TestFillConstantBatchSizeLike):
def init_force_cpu(self):
self.force_cpu = True
class TestFillConstantBatchSizeLike9(TestFillConstantBatchSizeLike):
def init_shape(self):
self.input_shape = [4, 5]
self.shape = [123, 92]
self.output_shape = (123, 4)
def init_dim_idx(self):
self.input_dim_idx = 0
self.output_dim_idx = 1
class TestFillConstantBatchSizeLikeLodTensor(TestFillConstantBatchSizeLike):
# test LodTensor
def setUp(self):
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.op_type = "fill_constant_batch_size_like"
self.init_shape()
self.init_value()
self.init_dtype()
self.init_force_cpu()
self.init_dim_idx()
lod = [[3, 2, 5]]
self.inputs = {
'Input': (np.random.random(self.input_shape).astype("float32"), lod)
}
self.attrs = {
'shape': self.shape,
'value': self.value,
'str_value': self.str_value,
'dtype': self.dtype,
'force_cpu': self.force_cpu,
'input_dim_idx': self.input_dim_idx,
'output_dim_idx': self.output_dim_idx
}
self.outputs = {
'Out': np.full(self.output_shape, self.output_value,
self.output_dtype)
}
def init_shape(self):
self.input_shape = [10, 20]
self.shape = [123, 92]
self.output_shape = (3, 92)
class TestFillConstantBatchSizeLikeLodTensor2(
TestFillConstantBatchSizeLikeLodTensor):
# test LodTensor with 'input_dim_idx' != 0
def init_shape(self):
self.input_shape = [10, 20]
self.shape = [123, 92]
self.output_shape = (20, 92)
def init_dim_idx(self):
self.input_dim_idx = 1
self.output_dim_idx = 0
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册