未验证 提交 875a07c3 编写于 作者: Y Yan Chunwei 提交者: GitHub

refactor inference analysis api (#14634)

上级 99e6e8b0
...@@ -134,6 +134,7 @@ if(WITH_GPU) ...@@ -134,6 +134,7 @@ if(WITH_GPU)
message(WARNING "Anakin needs CUDNN >= 7.0 to compile. Force WITH_ANAKIN=OFF") message(WARNING "Anakin needs CUDNN >= 7.0 to compile. Force WITH_ANAKIN=OFF")
set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when CUDNN >= 7.0." FORCE) set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when CUDNN >= 7.0." FORCE)
endif() endif()
add_definitions(-DWITH_ANAKIN)
endif() endif()
if(WITH_ANAKIN) if(WITH_ANAKIN)
# NOTICE(minqiyang): the end slash is important because $CUDNN_INCLUDE_DIR # NOTICE(minqiyang): the end slash is important because $CUDNN_INCLUDE_DIR
......
...@@ -40,14 +40,14 @@ void NaiveExecutor::Prepare(Scope *scope, const ProgramDesc &program_desc, ...@@ -40,14 +40,14 @@ void NaiveExecutor::Prepare(Scope *scope, const ProgramDesc &program_desc,
void NaiveExecutor::Run() { void NaiveExecutor::Run() {
#ifndef PADDLE_ON_INFERENCE #ifndef PADDLE_ON_INFERENCE
LOG_FIRST_N(WARNING, 15) << "The NaiveExecutor can not work properly if the " LOG_FIRST_N(WARNING, 5) << "The NaiveExecutor can not work properly if the "
"cmake flag ON_INFER is not set."; "cmake flag ON_INFER is not set.";
LOG_FIRST_N(WARNING, 15) << "Unlike the training phase, all the scopes and " LOG_FIRST_N(WARNING, 5) << "Unlike the training phase, all the scopes and "
"variables will be reused to save the allocation " "variables will be reused to save the allocation "
"overhead."; "overhead.";
LOG_FIRST_N(WARNING, 15) << "Please re-compile the inference library by " LOG_FIRST_N(WARNING, 5) << "Please re-compile the inference library by "
"setting the cmake flag ON_INFER=ON if you are " "setting the cmake flag ON_INFER=ON if you are "
"running Paddle Inference"; "running Paddle Inference";
#endif // PADDLE_ON_INFERENCE #endif // PADDLE_ON_INFERENCE
for (auto &op : ops_) { for (auto &op : ops_) {
VLOG(3) << std::this_thread::get_id() << " run " << op->Type() VLOG(3) << std::this_thread::get_id() << " run " << op->Type()
......
...@@ -14,86 +14,101 @@ ...@@ -14,86 +14,101 @@
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
#include "paddle_pass_builder.h" // NOLINT #include "paddle/fluid/platform/gpu_info.h"
namespace paddle { namespace paddle {
PassStrategy *contrib::AnalysisConfig::pass_builder() const { PassStrategy *contrib::AnalysisConfig::pass_builder() const {
PADDLE_ENFORCE( if (!pass_builder_.get()) {
pass_builder_.get(), if (use_gpu_) {
"Should call constructor first, that will init the pass_builder_."); LOG(INFO) << "Create GPU IR passes";
pass_builder_.reset(new GpuPassStrategy);
} else {
LOG(INFO) << "Create CPU IR passes";
pass_builder_.reset(new CpuPassStrategy);
}
} else if (pass_builder_->use_gpu() ^ use_gpu()) {
LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
"PassBuilder, the flags are "
<< use_gpu() << " " << pass_builder_->use_gpu();
LOG(WARNING) << "Please make them compatible, still use the existing "
"PassBuilder.";
}
return pass_builder_.get(); return pass_builder_.get();
} }
contrib::AnalysisConfig::AnalysisConfig(bool use_gpu) { contrib::AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
this->use_gpu = use_gpu; model_dir_ = model_dir;
if (use_gpu) { }
pass_builder_.reset(new GpuPassStrategy); contrib::AnalysisConfig::AnalysisConfig(const std::string &prog_file,
} else { const std::string &params_file) {
pass_builder_.reset(new CpuPassStrategy); prog_file_ = prog_file;
} params_file_ = params_file;
}
void contrib::AnalysisConfig::SetModel(const std::string &prog_file_path,
const std::string &params_file_path) {
prog_file_ = prog_file_path;
params_file_ = params_file_path;
}
void contrib::AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
int device_id) {
#ifdef PADDLE_WITH_CUDA
use_gpu_ = true;
memory_pool_init_size_mb_ = memory_pool_init_size_mb;
device_id_ = device_id;
#else
LOG(ERROR) << "Please compile with gpu to EnableGpu";
use_gpu_ = false;
#endif
} }
void contrib::AnalysisConfig::DisableGpu() { use_gpu_ = false; }
contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) { contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
// fields from Config #define CP_MEMBER(member__) member__ = other.member__;
model_dir = other.model_dir;
// fields from NativeConfig // Model related.
use_gpu = other.use_gpu; CP_MEMBER(model_dir_);
device = other.device; CP_MEMBER(prog_file_);
fraction_of_gpu_memory = other.fraction_of_gpu_memory; CP_MEMBER(params_file_);
prog_file = other.prog_file; CP_MEMBER(model_from_memory_); // the memory model reuses prog_file_ and
param_file = other.param_file; // params_file_ fields.
specify_input_name = other.specify_input_name; // Gpu releated.
cpu_math_library_num_threads_ = other.cpu_math_library_num_threads_; CP_MEMBER(use_gpu_);
// fields from this. CP_MEMBER(device_id_);
enable_ir_optim = other.enable_ir_optim; CP_MEMBER(memory_pool_init_size_mb_);
// For mkldnn // TensorRT releated.
use_mkldnn_ = other.use_mkldnn_; CP_MEMBER(use_tensorrt_);
mkldnn_enabled_op_types_ = other.mkldnn_enabled_op_types_; CP_MEMBER(tensorrt_workspace_size_);
CP_MEMBER(tensorrt_max_batchsize_);
use_feed_fetch_ops = other.use_feed_fetch_ops; CP_MEMBER(tensorrt_min_subgraph_size_);
use_tensorrt_ = other.use_tensorrt_; // MKLDNN releated.
tensorrt_max_batchsize_ = other.tensorrt_max_batchsize_; CP_MEMBER(use_mkldnn_);
tensorrt_workspace_size_ = other.tensorrt_workspace_size_; CP_MEMBER(mkldnn_enabled_op_types_);
tensorrt_min_subgraph_size_ = other.tensorrt_min_subgraph_size_;
model_from_memory_ = other.model_from_memory_; // Ir related.
CP_MEMBER(enable_ir_optim_);
if (use_gpu) { CP_MEMBER(use_feed_fetch_ops_);
CP_MEMBER(ir_debug_);
CP_MEMBER(specify_input_name_);
CP_MEMBER(cpu_math_library_num_threads_);
CP_MEMBER(serialized_info_cache_);
if (use_gpu_) {
pass_builder_.reset(new GpuPassStrategy( pass_builder_.reset(new GpuPassStrategy(
*static_cast<GpuPassStrategy *>(other.pass_builder()))); *static_cast<GpuPassStrategy *>(other.pass_builder())));
} else { } else {
pass_builder_.reset(new CpuPassStrategy( pass_builder_.reset(new CpuPassStrategy(
*static_cast<CpuPassStrategy *>(other.pass_builder()))); *static_cast<CpuPassStrategy *>(other.pass_builder())));
} }
}
contrib::AnalysisConfig::AnalysisConfig(contrib::AnalysisConfig &&other) { #undef CP_MEMBER
// fields from Config
model_dir = other.model_dir;
// fields from NativeConfig
use_gpu = other.use_gpu;
device = other.device;
fraction_of_gpu_memory = other.fraction_of_gpu_memory;
prog_file = other.prog_file;
param_file = other.param_file;
specify_input_name = other.specify_input_name;
cpu_math_library_num_threads_ = other.cpu_math_library_num_threads_;
// fields from this.
enable_ir_optim = other.enable_ir_optim;
// For mkldnn
use_mkldnn_ = other.use_mkldnn_;
mkldnn_enabled_op_types_ = other.mkldnn_enabled_op_types_;
use_feed_fetch_ops = other.use_feed_fetch_ops;
use_tensorrt_ = other.use_tensorrt_;
tensorrt_max_batchsize_ = other.tensorrt_max_batchsize_;
tensorrt_workspace_size_ = other.tensorrt_workspace_size_;
tensorrt_min_subgraph_size_ = other.tensorrt_min_subgraph_size_;
model_from_memory_ = other.model_from_memory_;
pass_builder_ = std::move(other.pass_builder_);
} }
void contrib::AnalysisConfig::EnableMKLDNN() { void contrib::AnalysisConfig::EnableMKLDNN() {
...@@ -112,17 +127,90 @@ void contrib::AnalysisConfig::EnableTensorRtEngine(int workspace_size, ...@@ -112,17 +127,90 @@ void contrib::AnalysisConfig::EnableTensorRtEngine(int workspace_size,
use_tensorrt_ = true; use_tensorrt_ = true;
tensorrt_workspace_size_ = workspace_size; tensorrt_workspace_size_ = workspace_size;
tensorrt_max_batchsize_ = max_batch_size; tensorrt_max_batchsize_ = max_batch_size;
tensorrt_min_subgraph_size_ = min_subgraph_size; }
// Append after the conv+affine_channel fuse pass.
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass"); void contrib::AnalysisConfig::Update() {
auto info = SerializeInfoCache();
if (info == serialized_info_cache_) return;
if (use_gpu_) {
pass_builder_.reset(new GpuPassStrategy);
} else {
pass_builder_.reset(new CpuPassStrategy);
}
if (use_tensorrt_) {
if (!use_gpu_) {
LOG(ERROR)
<< "TensorRT engine is not available when EnableGpu() not actived.";
} else {
// Append after the infer_clean pass.
pass_builder()->InsertPass(1, "tensorrt_subgraph_pass");
}
}
if (use_mkldnn_) {
if (!enable_ir_optim_) {
LOG(ERROR)
<< "EnableMKLDNN() only works when IR optimization is enabled.";
}
#ifdef PADDLE_WITH_MKLDNN
pass_builder()->EnableMKLDNN();
use_mkldnn_ = true;
#else
LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
use_mkldnn_ = false;
#endif
}
if (ir_debug_) {
pass_builder()->TurnOnDebug();
}
}
std::string contrib::AnalysisConfig::SerializeInfoCache() {
std::stringstream ss;
ss << use_gpu_;
ss << memory_pool_init_size_mb_;
ss << use_tensorrt_;
ss << tensorrt_workspace_size_;
ss << tensorrt_max_batchsize_;
ss << use_mkldnn_;
ss << enable_ir_optim_;
ss << use_feed_fetch_ops_;
ss << ir_debug_;
return ss.str();
}
void contrib::AnalysisConfig::SetCpuMathLibraryNumThreads(
int cpu_math_library_num_threads) {
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
}
float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#ifdef PADDLE_WITH_CUDA
// Get the GPU memory details and calculate the fraction of memory for the
// GPU memory pool.
size_t gpu_used, gpu_available;
platform::GpuMemoryUsage(&gpu_used, &gpu_available);
double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
float fraction_of_gpu_memory =
static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
return fraction_of_gpu_memory;
#else
return 0.;
#endif
} }
void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer, void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
size_t prog_buffer_size, size_t prog_buffer_size,
const char *param_buffer, const char *param_buffer,
size_t param_buffer_size) { size_t param_buffer_size) {
prog_file = std::string(prog_buffer, prog_buffer + prog_buffer_size); prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
param_file = std::string(param_buffer, param_buffer + param_buffer_size); params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
model_from_memory_ = true; model_from_memory_ = true;
} }
......
...@@ -33,6 +33,7 @@ ...@@ -33,6 +33,7 @@
#include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
DECLARE_bool(profile); DECLARE_bool(profile);
...@@ -59,8 +60,8 @@ bool AnalysisPredictor::Init( ...@@ -59,8 +60,8 @@ bool AnalysisPredictor::Init(
if (FLAGS_profile) { if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance"; LOG(WARNING) << "Profiler is actived, might affect the performance";
LOG(INFO) << "You can turn off by set gflags '-profile false'"; LOG(INFO) << "You can turn off by set gflags '-profile false'";
auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
: platform::ProfilerState::kCPU; : platform::ProfilerState::kCPU;
platform::EnableProfiler(tracking_device); platform::EnableProfiler(tracking_device);
} }
...@@ -112,7 +113,7 @@ bool AnalysisPredictor::PrepareProgram( ...@@ -112,7 +113,7 @@ bool AnalysisPredictor::PrepareProgram(
// Optimize the program, and load parameters and modify them in the // Optimize the program, and load parameters and modify them in the
// scope_. // scope_.
// This will change the scope_ address. // This will change the scope_ address.
if (config_.enable_ir_optim) { if (config_.ir_optim()) {
status_ir_optim_enabled_ = true; status_ir_optim_enabled_ = true;
OptimizeInferenceProgram(); OptimizeInferenceProgram();
} else { } else {
...@@ -140,9 +141,9 @@ bool AnalysisPredictor::PrepareProgram( ...@@ -140,9 +141,9 @@ bool AnalysisPredictor::PrepareProgram(
return true; return true;
} }
bool AnalysisPredictor::CreateExecutor() { bool AnalysisPredictor::CreateExecutor() {
if (config_.use_gpu) { if (config_.use_gpu_) {
status_use_gpu_ = true; status_use_gpu_ = true;
place_ = paddle::platform::CUDAPlace(config_.device); place_ = paddle::platform::CUDAPlace(config_.device_id_);
} else { } else {
place_ = paddle::platform::CPUPlace(); place_ = paddle::platform::CPUPlace();
} }
...@@ -151,7 +152,7 @@ bool AnalysisPredictor::CreateExecutor() { ...@@ -151,7 +152,7 @@ bool AnalysisPredictor::CreateExecutor() {
} }
bool AnalysisPredictor::PrepareExecutor() { bool AnalysisPredictor::PrepareExecutor() {
executor_->Prepare(sub_scope_, *inference_program_, 0, executor_->Prepare(sub_scope_, *inference_program_, 0,
config_.use_feed_fetch_ops); config_.use_feed_fetch_ops_);
PADDLE_ENFORCE_NOT_NULL(sub_scope_); PADDLE_ENFORCE_NOT_NULL(sub_scope_);
...@@ -250,7 +251,7 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs, ...@@ -250,7 +251,7 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
} }
input.set_lod(lod); input.set_lod(lod);
int idx = -1; int idx = -1;
if (config_.specify_input_name) { if (config_.specify_input_name_) {
auto name = inputs[i].name; auto name = inputs[i].name;
if (feed_names_.find(name) == feed_names_.end()) { if (feed_names_.find(name) == feed_names_.end()) {
LOG(ERROR) << "feed names from program do not have name: [" << name LOG(ERROR) << "feed names from program do not have name: [" << name
...@@ -314,22 +315,22 @@ bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs, ...@@ -314,22 +315,22 @@ bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
void AnalysisPredictor::OptimizeInferenceProgram() { void AnalysisPredictor::OptimizeInferenceProgram() {
status_program_optimized_ = true; status_program_optimized_ = true;
argument_.SetUseGPU(config_.use_gpu); argument_.SetUseGPU(config_.use_gpu());
argument_.SetGPUDeviceId(config_.device); argument_.SetGPUDeviceId(config_.gpu_device_id());
argument_.SetModelFromMemory(config_.model_from_memory_); argument_.SetModelFromMemory(config_.model_from_memory_);
// Analyze inference_program // Analyze inference_program
if (!config_.model_dir.empty()) { if (!config_.model_dir().empty()) {
argument_.SetModelDir(config_.model_dir); argument_.SetModelDir(config_.model_dir());
} else { } else {
PADDLE_ENFORCE( PADDLE_ENFORCE(
!config_.param_file.empty(), !config_.params_file().empty(),
"Either model_dir or (param_file, prog_file) should be set."); "Either model_dir or (param_file, prog_file) should be set.");
PADDLE_ENFORCE(!config_.prog_file.empty()); PADDLE_ENFORCE(!config_.prog_file().empty());
argument_.SetModelProgramPath(config_.prog_file); argument_.SetModelProgramPath(config_.prog_file());
argument_.SetModelParamsPath(config_.param_file); argument_.SetModelParamsPath(config_.params_file());
} }
if (config_.use_gpu && config_.use_tensorrt_) { if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
argument_.SetUseTensorRT(true); argument_.SetUseTensorRT(true);
argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_); argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_); argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
...@@ -341,7 +342,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() { ...@@ -341,7 +342,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
} }
auto passes = config_.pass_builder()->AllPasses(); auto passes = config_.pass_builder()->AllPasses();
if (!config_.enable_ir_optim) passes.clear(); if (!config_.ir_optim()) passes.clear();
argument_.SetIrAnalysisPasses(passes); argument_.SetIrAnalysisPasses(passes);
argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get())); argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get()));
Analyzer().Run(&argument_); Analyzer().Run(&argument_);
...@@ -358,18 +359,26 @@ template <> ...@@ -358,18 +359,26 @@ template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor< std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) { AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
VLOG(3) << "create AnalysisConfig"; VLOG(3) << "create AnalysisConfig";
if (config.use_gpu) { if (config.use_gpu()) {
// 1. GPU memeroy // 1. GPU memeroy
PADDLE_ENFORCE_GT( PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
config.fraction_of_gpu_memory, 0.f, PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
"fraction_of_gpu_memory in the config should be set to range (0., 1.]"); config.gpu_device_id());
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
std::vector<std::string> flags; std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) { float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
if (fraction_of_gpu_memory > 0.95f) {
LOG(ERROR)
<< "Allocate too much memory for the GPU memory pool, assigned "
<< config.memory_pool_init_size_mb() << " MB";
LOG(ERROR)
<< "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
}
if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
flags.push_back("dummpy"); flags.push_back("dummpy");
std::string flag = "--fraction_of_gpu_memory_to_use=" + std::string flag = "--fraction_of_gpu_memory_to_use=" +
std::to_string(config.fraction_of_gpu_memory); std::to_string(fraction_of_gpu_memory);
flags.push_back(flag); flags.push_back(flag);
VLOG(3) << "set flag: " << flag; VLOG(3) << "set flag: " << flag;
framework::InitGflags(flags); framework::InitGflags(flags);
...@@ -443,22 +452,22 @@ bool AnalysisPredictor::ZeroCopyRun() { ...@@ -443,22 +452,22 @@ bool AnalysisPredictor::ZeroCopyRun() {
bool AnalysisPredictor::LoadProgramDesc() { bool AnalysisPredictor::LoadProgramDesc() {
// Initialize the inference program // Initialize the inference program
std::string filename; std::string filename;
if (!config_.model_dir.empty()) { if (!config_.model_dir().empty()) {
filename = config_.model_dir + "/__model__"; filename = config_.model_dir() + "/__model__";
} else if (!config_.prog_file.empty() && !config_.param_file.empty()) { } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
// All parameters are saved in a single file. // All parameters are saved in a single file.
// The file names should be consistent with that used // The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`. // in Python API `fluid.io.save_inference_model`.
filename = config_.prog_file; filename = config_.prog_file();
} else { } else {
if (config_.model_dir.empty() && config_.prog_file.empty()) { if (config_.model_dir().empty() && config_.prog_file().empty()) {
LOG(ERROR) LOG(ERROR)
<< "Either model_dir or (prog_file, param_file) should be set."; << "Either model_dir or (prog_file, param_file) should be set.";
return false; return false;
} }
LOG(ERROR) << string::Sprintf( LOG(ERROR) << string::Sprintf(
"not valid model path '%s' or program path '%s'.", config_.model_dir, "not valid model path '%s' or program path '%s'.", config_.model_dir(),
config_.param_file); config_.params_file());
return false; return false;
} }
...@@ -478,7 +487,7 @@ bool AnalysisPredictor::LoadProgramDesc() { ...@@ -478,7 +487,7 @@ bool AnalysisPredictor::LoadProgramDesc() {
proto.ParseFromString(pb_content); proto.ParseFromString(pb_content);
} else { } else {
proto.ParseFromString(config_.prog_file); proto.ParseFromString(config_.prog_file());
} }
inference_program_.reset(new framework::ProgramDesc(proto)); inference_program_.reset(new framework::ProgramDesc(proto));
return true; return true;
...@@ -508,27 +517,27 @@ bool AnalysisPredictor::LoadParameters() { ...@@ -508,27 +517,27 @@ bool AnalysisPredictor::LoadParameters() {
new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetLoDLevel(var->GetLoDLevel());
new_var->SetPersistable(true); new_var->SetPersistable(true);
if (!config_.param_file.empty()) { if (!config_.params_file().empty()) {
params.push_back(new_var->Name()); params.push_back(new_var->Name());
} else { } else {
// append_op // append_op
framework::OpDesc *op = load_block->AppendOp(); framework::OpDesc *op = load_block->AppendOp();
op->SetType("load"); op->SetType("load");
op->SetOutput("Out", {new_var->Name()}); op->SetOutput("Out", {new_var->Name()});
op->SetAttr("file_path", {config_.model_dir + "/" + new_var->Name()}); op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
op->CheckAttrs(); op->CheckAttrs();
} }
} }
} }
if (!config_.param_file.empty()) { if (!config_.params_file().empty()) {
// sort paramlist to have consistent ordering // sort paramlist to have consistent ordering
std::sort(params.begin(), params.end()); std::sort(params.begin(), params.end());
// append just the load_combine op // append just the load_combine op
framework::OpDesc *op = load_block->AppendOp(); framework::OpDesc *op = load_block->AppendOp();
op->SetType("load_combine"); op->SetType("load_combine");
op->SetOutput("Out", params); op->SetOutput("Out", params);
op->SetAttr("file_path", {config_.param_file}); op->SetAttr("file_path", {config_.params_file()});
op->CheckAttrs(); op->CheckAttrs();
} }
......
...@@ -25,9 +25,9 @@ namespace paddle { ...@@ -25,9 +25,9 @@ namespace paddle {
using contrib::AnalysisConfig; using contrib::AnalysisConfig;
TEST(AnalysisPredictor, analysis_off) { TEST(AnalysisPredictor, analysis_off) {
AnalysisConfig config(false); AnalysisConfig config;
config.model_dir = FLAGS_dirname; config.SetModel(FLAGS_dirname);
config.enable_ir_optim = false; config.SwitchIrOptim(false);
auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config); auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get()); auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());
...@@ -55,14 +55,14 @@ TEST(AnalysisPredictor, analysis_off) { ...@@ -55,14 +55,14 @@ TEST(AnalysisPredictor, analysis_off) {
} }
TEST(AnalysisPredictor, analysis_on) { TEST(AnalysisPredictor, analysis_on) {
AnalysisConfig config;
config.SetModel(FLAGS_dirname);
config.SwitchIrOptim(true);
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
AnalysisConfig config(true); config.EnableUseGpu(100, 0);
config.fraction_of_gpu_memory = 0.15;
#else #else
AnalysisConfig config; config.DisableGpu();
#endif #endif
config.model_dir = FLAGS_dirname;
config.enable_ir_optim = true;
auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config); auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get()); auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());
...@@ -89,7 +89,8 @@ TEST(AnalysisPredictor, analysis_on) { ...@@ -89,7 +89,8 @@ TEST(AnalysisPredictor, analysis_on) {
} }
// compare with NativePredictor // compare with NativePredictor
auto naive_predictor = CreatePaddlePredictor<NativeConfig>(config); auto naive_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
std::vector<PaddleTensor> naive_outputs; std::vector<PaddleTensor> naive_outputs;
ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs)); ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs));
ASSERT_EQ(naive_outputs.size(), 1UL); ASSERT_EQ(naive_outputs.size(), 1UL);
...@@ -98,9 +99,8 @@ TEST(AnalysisPredictor, analysis_on) { ...@@ -98,9 +99,8 @@ TEST(AnalysisPredictor, analysis_on) {
TEST(AnalysisPredictor, ZeroCopy) { TEST(AnalysisPredictor, ZeroCopy) {
AnalysisConfig config; AnalysisConfig config;
config.model_dir = FLAGS_dirname; config.SetModel(FLAGS_dirname);
config.use_feed_fetch_ops = false; config.SwitchUseFeedFetchOps(false);
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config); auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto w0 = predictor->GetInputTensor("firstw"); auto w0 = predictor->GetInputTensor("firstw");
...@@ -137,9 +137,9 @@ TEST(AnalysisPredictor, ZeroCopy) { ...@@ -137,9 +137,9 @@ TEST(AnalysisPredictor, ZeroCopy) {
TEST(AnalysisPredictor, Clone) { TEST(AnalysisPredictor, Clone) {
AnalysisConfig config; AnalysisConfig config;
config.model_dir = FLAGS_dirname; config.SetModel(FLAGS_dirname);
config.use_feed_fetch_ops = true; config.SwitchUseFeedFetchOps(true);
config.enable_ir_optim = true; config.SwitchIrOptim(true);
std::vector<std::unique_ptr<PaddlePredictor>> predictors; std::vector<std::unique_ptr<PaddlePredictor>> predictors;
predictors.emplace_back(CreatePaddlePredictor(config)); predictors.emplace_back(CreatePaddlePredictor(config));
......
...@@ -19,8 +19,6 @@ limitations under the License. */ ...@@ -19,8 +19,6 @@ limitations under the License. */
#pragma once #pragma once
#define WITH_ANAKIN
#include <vector> #include <vector>
#include "framework/core/net/net.h" #include "framework/core/net/net.h"
......
...@@ -288,7 +288,7 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor< ...@@ -288,7 +288,7 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
VLOG(3) << "create NativePaddlePredictor"; VLOG(3) << "create NativePaddlePredictor";
if (config.use_gpu) { if (config.use_gpu) {
// 1. GPU memeroy // 1. GPU memeroy
PADDLE_ENFORCE_GT( PADDLE_ENFORCE_GE(
config.fraction_of_gpu_memory, 0.f, config.fraction_of_gpu_memory, 0.f,
"fraction_of_gpu_memory in the config should be set to range (0., 1.]"); "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device); PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
......
...@@ -295,7 +295,8 @@ TEST(inference_api_native, image_classification_gpu) { ...@@ -295,7 +295,8 @@ TEST(inference_api_native, image_classification_gpu) {
#endif #endif
TEST(PassBuilder, Delete) { TEST(PassBuilder, Delete) {
contrib::AnalysisConfig config(false); contrib::AnalysisConfig config;
config.DisableGpu();
config.pass_builder()->DeletePass("attention_lstm_fuse_pass"); config.pass_builder()->DeletePass("attention_lstm_fuse_pass");
const auto& passes = config.pass_builder()->AllPasses(); const auto& passes = config.pass_builder()->AllPasses();
auto it = std::find(passes.begin(), passes.end(), "attention_lstm_fuse_pass"); auto it = std::find(passes.begin(), passes.end(), "attention_lstm_fuse_pass");
......
...@@ -36,12 +36,11 @@ namespace demo { ...@@ -36,12 +36,11 @@ namespace demo {
*/ */
void Main() { void Main() {
std::unique_ptr<PaddlePredictor> predictor; std::unique_ptr<PaddlePredictor> predictor;
paddle::contrib::AnalysisConfig config(true); paddle::contrib::AnalysisConfig config;
config.param_file = FLAGS_modeldir + "/__params__"; config.EnableUseGpu(100, 0);
config.prog_file = FLAGS_modeldir + "/__model__"; config.SetModel(FLAGS_modeldir + "/__params__",
config.device = 0; FLAGS_modeldir + "/__model__");
config.EnableTensorRtEngine(); config.EnableTensorRtEngine();
config.fraction_of_gpu_memory = 0.1; // set by yourself
predictor = CreatePaddlePredictor(config); predictor = CreatePaddlePredictor(config);
VLOG(3) << "begin to process data"; VLOG(3) << "begin to process data";
......
...@@ -40,15 +40,14 @@ using contrib::AnalysisConfig; ...@@ -40,15 +40,14 @@ using contrib::AnalysisConfig;
*/ */
void Main(bool use_gpu) { void Main(bool use_gpu) {
std::unique_ptr<PaddlePredictor> predictor, analysis_predictor; std::unique_ptr<PaddlePredictor> predictor, analysis_predictor;
AnalysisConfig config(use_gpu); AnalysisConfig config;
config.param_file = FLAGS_modeldir + "/__params__"; if (use_gpu) {
config.prog_file = FLAGS_modeldir + "/__model__"; config.EnableUseGpu(100, 0);
config.device = 0;
if (FLAGS_use_gpu) {
config.fraction_of_gpu_memory = 0.1; // set by yourself
} }
config.SetModel(FLAGS_modeldir + "/__model__",
FLAGS_modeldir + "/__params__");
predictor = CreatePaddlePredictor<NativeConfig>(config); predictor = CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
analysis_predictor = CreatePaddlePredictor(config); analysis_predictor = CreatePaddlePredictor(config);
// Just a single batch of data. // Just a single batch of data.
......
...@@ -34,26 +34,67 @@ class AnalysisPredictor; ...@@ -34,26 +34,67 @@ class AnalysisPredictor;
namespace contrib { namespace contrib {
// NOTE WIP, not stable yet. // NOTE WIP, not stable yet.
struct AnalysisConfig : public NativeConfig { struct AnalysisConfig {
explicit AnalysisConfig(bool use_gpu = false); AnalysisConfig() = default;
explicit AnalysisConfig(const AnalysisConfig& other); explicit AnalysisConfig(const AnalysisConfig& other);
explicit AnalysisConfig(AnalysisConfig&& other); explicit AnalysisConfig(const std::string& model_dir);
explicit AnalysisConfig(const std::string& prog_file,
const std::string& params_file);
// Model path related.
void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
void SetModel(const std::string& prog_file_path,
const std::string& params_file_path);
void SetProgFile(const std::string& x) { prog_file_ = x; }
void SetParamsFile(const std::string& x) { params_file_ = x; }
const std::string& model_dir() const { return model_dir_; }
const std::string& prog_file() const { return prog_file_; }
const std::string& params_file() const { return params_file_; }
// GPU related.
void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
void DisableGpu();
bool use_gpu() const { return use_gpu_; }
int gpu_device_id() const { return device_id_; }
int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
float fraction_of_gpu_memory_for_pool() const;
// Determine whether to perform graph optimization. // Determine whether to perform graph optimization.
bool enable_ir_optim = true; void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
bool ir_optim() const { return enable_ir_optim_; }
// Get a pass builder for customize the passes in IR analysis phase. void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
PassStrategy* pass_builder() const; bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
// NOT stable yet. void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
bool use_feed_fetch_ops{true}; bool specify_input_name() const { return specify_input_name_; }
void EnableTensorRtEngine(int workspace_size = 1 << 20, void EnableTensorRtEngine(int workspace_size = 1 << 20,
int max_batch_size = 1, int min_subgraph_size = 3); int max_batch_size = 1, int min_subgraph_size = 3);
bool use_tensorrt() const { return use_tensorrt_; } bool tensorrt_engine_enabled() const { return use_tensorrt_; }
void SwitchIrDebug(int x = true) { ir_debug_ = x; }
void EnableMKLDNN(); void EnableMKLDNN();
bool use_mkldnn() const { return use_mkldnn_; } bool mkldnn_enabled() const { return use_mkldnn_; }
// Set and get the number of cpu math library threads.
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
int cpu_math_library_num_threads() const {
return cpu_math_library_num_threads_;
}
NativeConfig ToNativeConfig() const {
NativeConfig config;
config.model_dir = model_dir_;
config.prog_file = prog_file_;
config.param_file = params_file_;
config.use_gpu = use_gpu_;
config.device = device_id_;
config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
config.specify_input_name = specify_input_name_;
return config;
}
void SetMKLDNNOp(std::unordered_set<std::string> op_list) { void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
mkldnn_enabled_op_types_ = op_list; mkldnn_enabled_op_types_ = op_list;
} }
...@@ -65,10 +106,29 @@ struct AnalysisConfig : public NativeConfig { ...@@ -65,10 +106,29 @@ struct AnalysisConfig : public NativeConfig {
friend class ::paddle::AnalysisPredictor; friend class ::paddle::AnalysisPredictor;
// NOTE just for developer, not an official API, easily to be broken.
// Get a pass builder for customize the passes in IR analysis phase.
PassStrategy* pass_builder() const;
protected:
// Update the config.
void Update();
std::string SerializeInfoCache();
protected: protected:
// Model pathes.
std::string model_dir_;
std::string prog_file_;
std::string params_file_;
// GPU releated.
bool use_gpu_{false};
int device_id_{0};
uint64_t memory_pool_init_size_mb_{100}; // initial size is 100MB.
// TensorRT releated.
bool use_tensorrt_{false}; bool use_tensorrt_{false};
bool use_mkldnn_{false};
std::unordered_set<std::string> mkldnn_enabled_op_types_;
// For workspace_size, refer it from here: // For workspace_size, refer it from here:
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
int tensorrt_workspace_size_; int tensorrt_workspace_size_;
...@@ -82,17 +142,24 @@ struct AnalysisConfig : public NativeConfig { ...@@ -82,17 +142,24 @@ struct AnalysisConfig : public NativeConfig {
// We set this variable to control the minimum number of nodes in the // We set this variable to control the minimum number of nodes in the
// subgraph, 3 as default value. // subgraph, 3 as default value.
int tensorrt_min_subgraph_size_{3}; int tensorrt_min_subgraph_size_{3};
std::unique_ptr<PassStrategy> pass_builder_;
bool use_mkldnn_{false};
std::unordered_set<std::string> mkldnn_enabled_op_types_;
bool model_from_memory_{false}; bool model_from_memory_{false};
};
// Configurations for Anakin engine. bool enable_ir_optim_{true};
struct AnakinConfig : public PaddlePredictor::Config { bool use_feed_fetch_ops_{true};
enum TargetType { NVGPU = 0, X86 }; bool ir_debug_{false};
int device;
std::string model_file; bool specify_input_name_{false};
int max_batch_size{-1};
TargetType target_type; int cpu_math_library_num_threads_{1};
// A runtime cache, shouldn't be transferred to others.
std::string serialized_info_cache_;
mutable std::unique_ptr<PassStrategy> pass_builder_;
}; };
} // namespace contrib } // namespace contrib
......
...@@ -26,9 +26,8 @@ limitations under the License. */ ...@@ -26,9 +26,8 @@ limitations under the License. */
#include <string> #include <string>
#include <vector> #include <vector>
#include "paddle_api.h" // NOLINT
#ifndef WITH_ANAKIN
#include "paddle_analysis_config.h" // NOLINT #include "paddle_analysis_config.h" // NOLINT
#else #include "paddle_api.h" // NOLINT
#ifdef WITH_ANAKIN
#include "paddle_anakin_config.h" // NOLINT #include "paddle_anakin_config.h" // NOLINT
#endif #endif
...@@ -62,7 +62,12 @@ class PassStrategy : public PaddlePassBuilder { ...@@ -62,7 +62,12 @@ class PassStrategy : public PaddlePassBuilder {
// still some CPU kernels running in CPU mode. // still some CPU kernels running in CPU mode.
virtual void EnableMKLDNN() = 0; virtual void EnableMKLDNN() = 0;
bool use_gpu() const { return use_gpu_; }
virtual ~PassStrategy() = default; virtual ~PassStrategy() = default;
protected:
bool use_gpu_{false};
}; };
/* /*
...@@ -88,6 +93,7 @@ class CpuPassStrategy : public PassStrategy { ...@@ -88,6 +93,7 @@ class CpuPassStrategy : public PassStrategy {
"conv_eltwiseadd_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", //
"is_test_pass", // "is_test_pass", //
}); });
use_gpu_ = false;
} }
virtual ~CpuPassStrategy() = default; virtual ~CpuPassStrategy() = default;
...@@ -126,10 +132,14 @@ class GpuPassStrategy : public PassStrategy { ...@@ -126,10 +132,14 @@ class GpuPassStrategy : public PassStrategy {
"conv_elementwise_add2_act_fuse_pass", // "conv_elementwise_add2_act_fuse_pass", //
"conv_elementwise_add_fuse_pass", // "conv_elementwise_add_fuse_pass", //
}); });
use_gpu_ = true;
} }
GpuPassStrategy(const GpuPassStrategy &other) GpuPassStrategy(const GpuPassStrategy &other)
: PassStrategy(other.AllPasses()) {} : PassStrategy(other.AllPasses()) {
use_gpu_ = true;
}
void EnableMKLDNN() override; void EnableMKLDNN() override;
......
...@@ -165,12 +165,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data, ...@@ -165,12 +165,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
} }
void SetConfig(contrib::AnalysisConfig *cfg) { void SetConfig(contrib::AnalysisConfig *cfg) {
cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
cfg->param_file = FLAGS_infer_model + "/param"; cfg->SwitchSpecifyInputNames();
cfg->use_gpu = false; cfg->SwitchIrOptim(true);
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
...@@ -105,11 +105,10 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data, ...@@ -105,11 +105,10 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
} }
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model; cfg->SetModel(FLAGS_infer_model);
cfg->use_gpu = false; cfg->DisableGpu();
cfg->device = 0; cfg->SwitchSpecifyInputNames();
cfg->specify_input_name = true; cfg->SwitchIrOptim();
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
...@@ -76,11 +76,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data, ...@@ -76,11 +76,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
} }
void SetConfig(contrib::AnalysisConfig *cfg) { void SetConfig(contrib::AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model; cfg->SetModel(FLAGS_infer_model);
cfg->use_gpu = false; cfg->DisableGpu();
cfg->device = 0; cfg->SwitchSpecifyInputNames();
cfg->specify_input_name = true; cfg->SwitchIrOptim();
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
...@@ -84,13 +84,12 @@ void SetConfig(contrib::AnalysisConfig *cfg, bool memory_load = false) { ...@@ -84,13 +84,12 @@ void SetConfig(contrib::AnalysisConfig *cfg, bool memory_load = false) {
cfg->SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0], cfg->SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0],
buffer_param.size()); buffer_param.size());
} else { } else {
cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->SetModel(FLAGS_infer_model + "/__model__",
cfg->param_file = FLAGS_infer_model + "/param"; FLAGS_infer_model + "/param");
} }
cfg->use_gpu = false; cfg->DisableGpu();
cfg->device = 0; cfg->SwitchSpecifyInputNames();
cfg->specify_input_name = true; cfg->SwitchIrOptim();
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
...@@ -21,12 +21,10 @@ namespace inference { ...@@ -21,12 +21,10 @@ namespace inference {
namespace analysis { namespace analysis {
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/params"; cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
cfg->prog_file = FLAGS_infer_model + "/model"; cfg->DisableGpu();
cfg->use_gpu = false; cfg->SwitchIrOptim();
cfg->device = 0; cfg->SwitchSpecifyInputNames();
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads); cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
} }
......
...@@ -204,12 +204,10 @@ void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor, ...@@ -204,12 +204,10 @@ void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor,
} }
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
cfg->param_file = FLAGS_infer_model + "/param"; cfg->DisableGpu();
cfg->use_gpu = false; cfg->SwitchSpecifyInputNames();
cfg->device = 0; cfg->SwitchIrOptim();
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
...@@ -225,10 +223,10 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { ...@@ -225,10 +223,10 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently. // Easy for profiling independently.
TEST(Analyzer_rnn1, profile) { TEST(Analyzer_rnn1, profile) {
contrib::AnalysisConfig cfg(false); contrib::AnalysisConfig cfg;
SetConfig(&cfg); SetConfig(&cfg);
cfg.fraction_of_gpu_memory = 0.1; cfg.DisableGpu();
cfg.pass_builder()->TurnOnDebug(); cfg.SwitchIrDebug();
std::vector<PaddleTensor> outputs; std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all; std::vector<std::vector<PaddleTensor>> input_slots_all;
...@@ -293,16 +291,18 @@ TEST(Analyzer_rnn1, multi_thread) { ...@@ -293,16 +291,18 @@ TEST(Analyzer_rnn1, multi_thread) {
TEST(Analyzer_rnn1, ZeroCopy) { TEST(Analyzer_rnn1, ZeroCopy) {
AnalysisConfig config; AnalysisConfig config;
SetConfig(&config); SetConfig(&config);
config.use_feed_fetch_ops = false; config.SwitchUseFeedFetchOps(false);
PaddlePlace place; PaddlePlace place;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config); auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
config.use_feed_fetch_ops = true; config.SwitchUseFeedFetchOps(true);
auto native_predictor = CreatePaddlePredictor<NativeConfig>(config); auto native_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
config.use_feed_fetch_ops = true; // the analysis predictor needs feed/fetch. config.SwitchUseFeedFetchOps(
true); // the analysis predictor needs feed/fetch.
auto analysis_predictor = CreatePaddlePredictor<AnalysisConfig>(config); auto analysis_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
#define NEW_TENSOR(name__) \ #define NEW_TENSOR(name__) \
...@@ -362,7 +362,7 @@ TEST(Analyzer_rnn1, ZeroCopy) { ...@@ -362,7 +362,7 @@ TEST(Analyzer_rnn1, ZeroCopy) {
TEST(Analyzer_rnn1, ZeroCopyMultiThread) { TEST(Analyzer_rnn1, ZeroCopyMultiThread) {
AnalysisConfig config; AnalysisConfig config;
SetConfig(&config); SetConfig(&config);
config.use_feed_fetch_ops = false; config.SwitchUseFeedFetchOps(false);
#define NEW_TENSOR(name__) \ #define NEW_TENSOR(name__) \
auto name__##_tensor = predictor->GetInputTensor(#name__); auto name__##_tensor = predictor->GetInputTensor(#name__);
......
...@@ -105,12 +105,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data, ...@@ -105,12 +105,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
} }
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
cfg->param_file = FLAGS_infer_model + "/param"; cfg->DisableGpu();
cfg->use_gpu = false; cfg->SwitchSpecifyInputNames();
cfg->device = 0; cfg->SwitchIrOptim();
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
...@@ -89,11 +89,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data, ...@@ -89,11 +89,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
} }
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model; cfg->SetModel(FLAGS_infer_model);
cfg->use_gpu = false; cfg->DisableGpu();
cfg->device = 0; cfg->SwitchSpecifyInputNames();
cfg->specify_input_name = true; cfg->SwitchIrOptim();
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
...@@ -122,12 +122,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) { ...@@ -122,12 +122,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
} }
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/params"; cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
cfg->prog_file = FLAGS_infer_model + "/model"; cfg->DisableGpu();
cfg->use_gpu = false; cfg->SwitchSpecifyInputNames();
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
cfg->pass_builder()->TurnOnDebug(); cfg->pass_builder()->TurnOnDebug();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads); cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
} }
......
...@@ -47,11 +47,10 @@ struct DataReader { ...@@ -47,11 +47,10 @@ struct DataReader {
}; };
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model; cfg->SetModel(FLAGS_infer_model);
cfg->use_gpu = false; cfg->DisableGpu();
cfg->device = 0; cfg->SwitchSpecifyInputNames();
cfg->specify_input_name = true; cfg->SwitchIrOptim();
cfg->enable_ir_optim = true;
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
...@@ -51,12 +51,11 @@ Record ProcessALine(const std::string &line) { ...@@ -51,12 +51,11 @@ Record ProcessALine(const std::string &line) {
} }
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/__params__"; cfg->SetModel(FLAGS_infer_model + "/__model__",
cfg->prog_file = FLAGS_infer_model + "/__model__"; FLAGS_infer_model + "/__params__");
cfg->use_gpu = false; cfg->DisableGpu();
cfg->device = 0; cfg->SwitchIrDebug();
cfg->enable_ir_optim = true; cfg->SwitchSpecifyInputNames();
cfg->specify_input_name = true;
// TODO(TJ): fix fusion gru // TODO(TJ): fix fusion gru
cfg->pass_builder()->DeletePass("fc_gru_fuse_pass"); cfg->pass_builder()->DeletePass("fc_gru_fuse_pass");
} }
......
...@@ -64,19 +64,23 @@ std::ostream &operator<<(std::ostream &os, ...@@ -64,19 +64,23 @@ std::ostream &operator<<(std::ostream &os,
num_spaces++; num_spaces++;
os << *reinterpret_cast<const NativeConfig *>(&config); os << *reinterpret_cast<const NativeConfig *>(&config);
if (!config.model_from_memory()) { if (!config.model_from_memory()) {
os << GenSpaces(num_spaces) << "prog_file: " << config.prog_file << "\n"; os << GenSpaces(num_spaces) << "prog_file: " << config.prog_file() << "\n";
os << GenSpaces(num_spaces) << "param_file: " << config.param_file << "\n"; os << GenSpaces(num_spaces) << "param_file: " << config.params_file()
<< "\n";
} else { } else {
os << GenSpaces(num_spaces) os << GenSpaces(num_spaces)
<< "prog_file and param_file: load from memory \n"; << "prog_file and param_file: load from memory \n";
} }
os << GenSpaces(num_spaces) << "enable_ir_optim: " << config.enable_ir_optim os << GenSpaces(num_spaces) << "enable_ir_optim: " << config.ir_optim()
<< "\n"; << "\n";
os << GenSpaces(num_spaces) << "enable_ir_optim: " << config.ir_optim()
<< "\n";
os << GenSpaces(num_spaces)
<< "use_feed_fetch_ops: " << config.use_feed_fetch_ops_enabled() << "\n";
os << GenSpaces(num_spaces) os << GenSpaces(num_spaces)
<< "use_feed_fetch_ops: " << config.use_feed_fetch_ops << "\n"; << "use_tensorrt: " << config.tensorrt_engine_enabled() << "\n";
os << GenSpaces(num_spaces) << "use_tensorrt: " << config.use_tensorrt() os << GenSpaces(num_spaces) << "use_mkldnn: " << config.mkldnn_enabled()
<< "\n"; << "\n";
os << GenSpaces(num_spaces) << "use_mkldnn: " << config.use_mkldnn() << "\n";
num_spaces--; num_spaces--;
os << GenSpaces(num_spaces) << "}\n"; os << GenSpaces(num_spaces) << "}\n";
return os; return os;
......
...@@ -328,7 +328,10 @@ void CompareNativeAndAnalysis( ...@@ -328,7 +328,10 @@ void CompareNativeAndAnalysis(
const std::vector<std::vector<PaddleTensor>> &inputs) { const std::vector<std::vector<PaddleTensor>> &inputs) {
PrintConfig(config, true); PrintConfig(config, true);
std::vector<PaddleTensor> native_outputs, analysis_outputs; std::vector<PaddleTensor> native_outputs, analysis_outputs;
TestOneThreadPrediction(config, inputs, &native_outputs, false); const auto *analysis_config =
reinterpret_cast<const contrib::AnalysisConfig *>(config);
auto native_config = analysis_config->ToNativeConfig();
TestOneThreadPrediction(&native_config, inputs, &native_outputs, false);
TestOneThreadPrediction(config, inputs, &analysis_outputs, true); TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
CompareResult(analysis_outputs, native_outputs); CompareResult(analysis_outputs, native_outputs);
} }
......
...@@ -46,22 +46,20 @@ void SetConfig<contrib::AnalysisConfig>(contrib::AnalysisConfig* config, ...@@ -46,22 +46,20 @@ void SetConfig<contrib::AnalysisConfig>(contrib::AnalysisConfig* config,
std::string model_dir, bool use_gpu, std::string model_dir, bool use_gpu,
bool use_tensorrt, int batch_size) { bool use_tensorrt, int batch_size) {
if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) { if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
config->prog_file = model_dir + "/" + FLAGS_prog_filename; config->SetModel(model_dir + "/" + FLAGS_prog_filename,
config->param_file = model_dir + "/" + FLAGS_param_filename; model_dir + "/" + FLAGS_param_filename);
} else { } else {
config->model_dir = model_dir; config->SetModel(model_dir);
} }
if (use_gpu) { if (use_gpu) {
config->use_gpu = true; config->EnableUseGpu(100, 0);
config->device = 0;
config->fraction_of_gpu_memory = 0.15;
if (use_tensorrt) { if (use_tensorrt) {
config->EnableTensorRtEngine(1 << 10, batch_size); config->EnableTensorRtEngine(1 << 10, batch_size);
config->pass_builder()->DeletePass("conv_bn_fuse_pass"); config->pass_builder()->DeletePass("conv_bn_fuse_pass");
config->pass_builder()->DeletePass("fc_fuse_pass"); config->pass_builder()->DeletePass("fc_fuse_pass");
config->pass_builder()->TurnOnDebug(); config->pass_builder()->TurnOnDebug();
} else { } else {
config->enable_ir_optim = true; config->SwitchIrOptim();
} }
} }
} }
...@@ -77,7 +75,8 @@ void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) { ...@@ -77,7 +75,8 @@ void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) {
std::vector<PaddleTensor> outputs; std::vector<PaddleTensor> outputs;
if (use_analysis || use_tensorrt) { if (use_analysis || use_tensorrt) {
contrib::AnalysisConfig config(true); contrib::AnalysisConfig config;
config.EnableUseGpu(100, 0);
config.pass_builder()->TurnOnDebug(); config.pass_builder()->TurnOnDebug();
SetConfig<contrib::AnalysisConfig>(&config, model_dir, true, use_tensorrt, SetConfig<contrib::AnalysisConfig>(&config, model_dir, true, use_tensorrt,
FLAGS_batch_size); FLAGS_batch_size);
...@@ -109,7 +108,8 @@ void compare(std::string model_dir, bool use_tensorrt) { ...@@ -109,7 +108,8 @@ void compare(std::string model_dir, bool use_tensorrt) {
&native_outputs, false); &native_outputs, false);
std::vector<PaddleTensor> analysis_outputs; std::vector<PaddleTensor> analysis_outputs;
contrib::AnalysisConfig analysis_config(true); contrib::AnalysisConfig analysis_config;
analysis_config.EnableUseGpu(50, 0);
SetConfig<contrib::AnalysisConfig>(&analysis_config, model_dir, true, SetConfig<contrib::AnalysisConfig>(&analysis_config, model_dir, true,
use_tensorrt, FLAGS_batch_size); use_tensorrt, FLAGS_batch_size);
TestOneThreadPrediction( TestOneThreadPrediction(
...@@ -154,9 +154,9 @@ TEST(TensorRT_mobilenet, analysis) { ...@@ -154,9 +154,9 @@ TEST(TensorRT_mobilenet, analysis) {
TEST(AnalysisPredictor, use_gpu) { TEST(AnalysisPredictor, use_gpu) {
std::string model_dir = FLAGS_infer_model + "/" + "mobilenet"; std::string model_dir = FLAGS_infer_model + "/" + "mobilenet";
AnalysisConfig config(true); AnalysisConfig config;
config.model_dir = model_dir; config.EnableUseGpu(100, 0);
config.fraction_of_gpu_memory = 0.15; config.SetModel(model_dir);
config.pass_builder()->TurnOnDebug(); config.pass_builder()->TurnOnDebug();
std::vector<std::vector<PaddleTensor>> inputs_all; std::vector<std::vector<PaddleTensor>> inputs_all;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册