Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
871edade
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
871edade
编写于
7月 12, 2021
作者:
P
pangyoki
提交者:
GitHub
7月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] slice support Tensor Input (#34067)
上级
113539eb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
238 addition
and
6 deletion
+238
-6
paddle/fluid/operators/slice_op_npu.cc
paddle/fluid/operators/slice_op_npu.cc
+80
-6
python/paddle/fluid/tests/unittests/npu/test_slice_op_npu.py
python/paddle/fluid/tests/unittests/npu/test_slice_op_npu.py
+158
-0
未找到文件。
paddle/fluid/operators/slice_op_npu.cc
浏览文件 @
871edade
...
...
@@ -61,11 +61,66 @@ class SliceNPUKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
auto
axes_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int
>
axes
(
axes_int
.
begin
(),
axes_int
.
end
());
std
::
vector
<
int
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
const
auto
&
in_dims
=
input
->
dims
();
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int
>
(
ends_tensor_list
);
}
PADDLE_ENFORCE_EQ
(
starts
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of starts must be equal to the size of axes."
));
PADDLE_ENFORCE_EQ
(
ends
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
if
(
ctx
.
HasInput
(
"StartsTensor"
)
||
ctx
.
HasInput
(
"EndsTensor"
)
||
starts_tensor_list
.
size
()
>
0
||
ends_tensor_list
.
size
()
>
0
)
{
// Infer output dims
auto
out_dims
=
out
->
dims
();
auto
slice_dims
=
out_dims
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
// when start == -1 && end == start+1
if
(
starts
[
i
]
==
-
1
&&
ends
[
i
]
==
0
&&
infer_flags
[
i
]
==
-
1
)
{
auto
ret
=
std
::
find
(
decrease_axis
.
begin
(),
decrease_axis
.
end
(),
axes
[
i
]);
if
(
ret
!=
decrease_axis
.
end
())
{
ends
[
i
]
=
in_dims
[
axes
[
i
]];
}
}
}
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
GetSliceDims
<
int
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
out_dims
=
GetDecreasedDims
(
slice_dims
,
decrease_axis
);
out
->
Resize
(
out_dims
);
}
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
offsets
(
in_dims
.
size
());
...
...
@@ -91,9 +146,28 @@ class SliceGradNPUKernel : public framework::OpKernel<T> {
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dinput
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
auto
axes_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int
>
axes
(
axes_int
.
begin
(),
axes_int
.
end
());
std
::
vector
<
int
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int
>
(
ends_tensor_list
);
}
const
auto
&
in_dims
=
input
->
dims
();
int
rank
=
in_dims
.
size
();
...
...
python/paddle/fluid/tests/unittests/npu/test_slice_op_npu.py
浏览文件 @
871edade
...
...
@@ -91,6 +91,164 @@ class TestSliceOpFp16(TestSliceOp):
self
.
place
=
paddle
.
NPUPlace
(
0
)
class
TestSliceOpTensor
(
TestSliceOp
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_npu
()
self
.
init_dtype
()
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensor'
:
self
.
starts
,
'EndsTensor'
:
self
.
ends
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
[
-
1
,
-
1
,
-
1
],
'ends'
:
[
-
1
,
-
1
,
-
1
],
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
np
.
array
([
1
,
0
,
2
]).
astype
(
'int32'
)
self
.
ends
=
np
.
array
([
3
,
3
,
4
]).
astype
(
'int32'
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
class
TestSliceOpTensor2
(
TestSliceOpTensor
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_npu
()
self
.
init_dtype
()
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensor'
:
self
.
starts
,
'EndsTensor'
:
self
.
ends
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
[
-
1
],
'ends'
:
[
-
1
],
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
10
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
np
.
array
([
0
]).
astype
(
'int32'
)
self
.
ends
=
np
.
array
([
1
]).
astype
(
'int32'
)
self
.
axes
=
[
1
]
self
.
infer_flags
=
[
-
1
]
self
.
out
=
self
.
input
[:,
0
:
1
,
:]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSliceOpFp16Tensor
(
TestSliceOpTensor
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
class
TestSliceOpTensorList
(
TestSliceOp
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_npu
()
self
.
init_dtype
()
self
.
config
()
self
.
starts_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
self
.
starts_tensor_list
.
append
((
"start"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
ends_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
self
.
ends_tensor_list
.
append
((
"end"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
self
.
starts_tensor_list
,
'EndsTensorList'
:
self
.
ends_tensor_list
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
[
-
1
,
-
1
,
-
1
],
'ends'
:
[
-
1
,
-
1
,
-
1
],
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
class
TestSliceOpTensorList2
(
TestSliceOpTensorList
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_npu
()
self
.
init_dtype
()
self
.
config
()
self
.
starts_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
self
.
starts_tensor_list
.
append
((
"start"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
ends_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
self
.
ends_tensor_list
.
append
((
"end"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
self
.
starts_tensor_list
,
'EndsTensorList'
:
self
.
ends_tensor_list
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
[
-
1
],
'ends'
:
[
-
1
],
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
10
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
np
.
array
([
0
]).
astype
(
'int32'
)
self
.
ends
=
np
.
array
([
1
]).
astype
(
'int32'
)
self
.
axes
=
[
1
]
self
.
infer_flags
=
[
-
1
]
self
.
out
=
self
.
input
[:,
0
:
1
,
:]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSliceOpFp16TensorList
(
TestSliceOpTensorList
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSliceNet
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录