未验证 提交 86511f51 编写于 作者: L lujun 提交者: GitHub

Merge pull request #13 from PaddlePaddle/develop

merge to local
...@@ -56,7 +56,7 @@ paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_pr ...@@ -56,7 +56,7 @@ paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_pr
paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '0a5308f496632ab1ec3ba1f1377e6f95')) paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '0a5308f496632ab1ec3ba1f1377e6f95'))
paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '41779819cef32f2246e83aebc5a002e2')) paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '41779819cef32f2246e83aebc5a002e2'))
paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '28df5bfe26ca7a077f91156abb0fe6d2')) paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '28df5bfe26ca7a077f91156abb0fe6d2'))
paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, True)), ('document', '582d87b8df75a5a639a107db8ff86f9c')) paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, True)), ('document', '70f4f53f13572436ac72d1c8b5efeb9d'))
paddle.fluid.io.load_inference_model (ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '7a5255386075dac3c75b7058254fcdcb')) paddle.fluid.io.load_inference_model (ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '7a5255386075dac3c75b7058254fcdcb'))
paddle.fluid.initializer.ConstantInitializer.__init__ (ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.ConstantInitializer.__init__ (ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.initializer.UniformInitializer.__init__ (ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.UniformInitializer.__init__ (ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...@@ -109,7 +109,7 @@ paddle.fluid.layers.reduce_prod (ArgSpec(args=['input', 'dim', 'keep_dim', 'name ...@@ -109,7 +109,7 @@ paddle.fluid.layers.reduce_prod (ArgSpec(args=['input', 'dim', 'keep_dim', 'name
paddle.fluid.layers.sequence_first_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '2b290d3d77882bfe9bb8d331cac8cdd3')) paddle.fluid.layers.sequence_first_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '2b290d3d77882bfe9bb8d331cac8cdd3'))
paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'c16a892f44f7fe71bfa5afc32d3f34ce')) paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'c16a892f44f7fe71bfa5afc32d3f34ce'))
paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fdcea0e8b5bc7d8d4b1b072c521014e6')) paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fdcea0e8b5bc7d8d4b1b072c521014e6'))
paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', 'dc7042734c6d8b8ce97321f017f01d6f')) paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', 'f1dd22f7351f7f9853212958e0d8aa7a'))
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '652625345c2acb900029c78cc75f8aa6')) paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '652625345c2acb900029c78cc75f8aa6'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ebbf2adbd79683dc93db03454dfa18c2')) paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ebbf2adbd79683dc93db03454dfa18c2'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', '97f0262f97602644c83142789d784571')) paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', '97f0262f97602644c83142789d784571'))
...@@ -205,7 +205,7 @@ paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, ...@@ -205,7 +205,7 @@ paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None,
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5f207ae10589ebe38a63575ef6ff8e1e')) paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5f207ae10589ebe38a63575ef6ff8e1e'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '51def402b8910e163cbace9d0c0526ed')) paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '51def402b8910e163cbace9d0c0526ed'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '77a6d80aa5551ca70324fc975c44507f')) paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '77a6d80aa5551ca70324fc975c44507f'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None)), ('document', '2f46f1ff39a13ab00857e7b9f44b2fa7')) paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ab84fdc6dc60f3ad9aa397e6007e3bf9'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '70e3b5182a18b40b47ecabd7c8490a35')) paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '70e3b5182a18b40b47ecabd7c8490a35'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '9bb77f8dc002dd2ce75d4769eaaf5007')) paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '9bb77f8dc002dd2ce75d4769eaaf5007'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd256cba1c41a5ed92ce3f31e24a2ca6d')) paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd256cba1c41a5ed92ce3f31e24a2ca6d'))
...@@ -296,7 +296,7 @@ paddle.fluid.layers.tanh (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non ...@@ -296,7 +296,7 @@ paddle.fluid.layers.tanh (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non
paddle.fluid.layers.atan (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3a46e0b5f9ce82348406478e610f14c9')) paddle.fluid.layers.atan (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3a46e0b5f9ce82348406478e610f14c9'))
paddle.fluid.layers.tanh_shrink (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1e521554b9fdda9061ec6d306f0709b7')) paddle.fluid.layers.tanh_shrink (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1e521554b9fdda9061ec6d306f0709b7'))
paddle.fluid.layers.softshrink (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9eef31597bbafa2bd49691e072296e13')) paddle.fluid.layers.softshrink (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9eef31597bbafa2bd49691e072296e13'))
paddle.fluid.layers.sqrt (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '072a8541e0f632366bba10f67cb0db27')) paddle.fluid.layers.sqrt (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e9e27491c39ac74d0b1ffe506aec0ebb'))
paddle.fluid.layers.abs (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '64650ac42cf82e9920cb0b172b1d29fd')) paddle.fluid.layers.abs (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '64650ac42cf82e9920cb0b172b1d29fd'))
paddle.fluid.layers.ceil (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c75d67dc5fe28f68e4cfffead4f698ad')) paddle.fluid.layers.ceil (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c75d67dc5fe28f68e4cfffead4f698ad'))
paddle.fluid.layers.floor (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '647b16c5da5ef909649ae02abb434973')) paddle.fluid.layers.floor (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '647b16c5da5ef909649ae02abb434973'))
......
...@@ -9,6 +9,7 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place ...@@ -9,6 +9,7 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place
cc_library(multi_devices_helper SRCS multi_devices_helper.cc DEPS graph graph_helper) cc_library(multi_devices_helper SRCS multi_devices_helper.cc DEPS graph graph_helper)
cc_library(multi_devices_graph_print_pass SRCS multi_devices_graph_print_pass.cc DEPS multi_devices_helper) cc_library(multi_devices_graph_print_pass SRCS multi_devices_graph_print_pass.cc DEPS multi_devices_helper)
cc_library(multi_devices_graph_check_pass SRCS multi_devices_graph_check_pass.cc DEPS multi_devices_helper) cc_library(multi_devices_graph_check_pass SRCS multi_devices_graph_check_pass.cc DEPS multi_devices_helper)
cc_library(alloc_continuous_space_for_grad_pass SRCS alloc_continuous_space_for_grad_pass.cc DEPS graph graph_helper)
cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows) cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows)
...@@ -22,6 +23,8 @@ endif() ...@@ -22,6 +23,8 @@ endif()
if(WITH_GPU) if(WITH_GPU)
nv_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory nv_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda variable_visitor) dynload_cuda variable_visitor)
nv_library(fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda variable_visitor)
if(WITH_DISTRIBUTE) if(WITH_DISTRIBUTE)
nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope
ddim dynload_cuda selected_rows_functor sendrecvop_rpc) ddim dynload_cuda selected_rows_functor sendrecvop_rpc)
...@@ -35,6 +38,8 @@ if(WITH_GPU) ...@@ -35,6 +38,8 @@ if(WITH_GPU)
else() else()
cc_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory cc_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor) variable_visitor)
cc_library(fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor)
if(WITH_DISTRIBUTE) if(WITH_DISTRIBUTE)
cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope
ddim selected_rows_functor sendrecvop_rpc) ddim selected_rows_functor sendrecvop_rpc)
...@@ -46,9 +51,7 @@ else() ...@@ -46,9 +51,7 @@ else()
cc_library(fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle) cc_library(fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle)
endif() endif()
cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_base scope lod_tensor)
cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor) cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor)
cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope)
if(WITH_GPU) if(WITH_GPU)
cc_library(memory_optimize_helper SRCS memory_optimize_helper.cc DEPS graph graph_helper gpu_info) cc_library(memory_optimize_helper SRCS memory_optimize_helper.cc DEPS graph graph_helper gpu_info)
...@@ -69,7 +72,9 @@ cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS grap ...@@ -69,7 +72,9 @@ cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS grap
cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass) cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass)
cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle) scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle fused_broadcast_op_handle)
cc_library(fuse_all_reduce_op_pass SRCS fuse_all_reduce_op_pass.cc DEPS graph graph_helper fused_all_reduce_op_handle)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass memory_optimize_pass inplace_op_pass) set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass memory_optimize_pass inplace_op_pass)
if (WITH_GPU) if (WITH_GPU)
...@@ -99,4 +104,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS ...@@ -99,4 +104,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
multi_devices_graph_print_pass multi_devices_graph_check_pass multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass fuse_elewise_add_act_pass multi_batch_merge_pass
fuse_relu_depthwise_conv_pass fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass) memory_optimize_pass lock_free_optimize_pass alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass)
...@@ -11,9 +11,8 @@ ...@@ -11,9 +11,8 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <algorithm>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h" #include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include <algorithm>
#include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h" #include "paddle/fluid/framework/details/variable_visitor.h"
...@@ -56,6 +55,7 @@ void AllReduceOpHandle::RunImpl() { ...@@ -56,6 +55,7 @@ void AllReduceOpHandle::RunImpl() {
platform::RecordEvent record_event(Name()); platform::RecordEvent record_event(Name());
WaitInputVarGenerated(); WaitInputVarGenerated();
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs()); auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs()); auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
DEFINE_uint32(fuse_parameter_memory_size, 0, // 0 KB
"fuse_parameter_memory_size is up limited memory size "
"of one group parameters' gradient which is the input "
"of communication calling(e.g NCCLAllReduce). "
"The default value is 0, it means that "
"not set group according to memory_size.");
DEFINE_int32(
fuse_parameter_groups_size, 3,
"fuse_parameter_groups_size is the size of one group parameters' gradient. "
"The default value is a experimental result. If the "
"fuse_parameter_groups_size is 1, it means that the groups size is "
"the number of parameters' gradient. If the fuse_parameter_groups_size is "
"-1, it means that there are only one group. The default value is 3, it is "
"an experimental value.");
namespace paddle {
namespace framework {
namespace details {
static const char kUnKnow[] = "@UNKNOW@";
static framework::proto::VarType::Type kDefaultDtype =
framework::proto::VarType::Type::VarType_Type_BOOL;
class AllocContinuousSpaceForGradPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override {
ir::Graph &result = *graph;
auto &places = Get<const std::vector<platform::Place>>(kPlaces);
auto &local_scopes = Get<const std::vector<Scope *>>(kLocalScopes);
ResetAttribute<ParamsAndGrads>(kParamsAndGrads, &result);
ResetAttribute<GroupGradsAndParams>(kGroupGradsAndParams, &result);
// NOTE: The operator nodes should be in topology order.
std::vector<ir::Node *> topo_nodes = ir::TopologySortOperations(result);
auto &params_grads = result.Get<ParamsAndGrads>(kParamsAndGrads);
for (auto &node : topo_nodes) {
RecordParamsAndGrads(node, &params_grads);
}
if (params_grads.size() == 0) {
VLOG(10) << "Doesn't find gradients";
return std::move(graph);
}
std::unordered_map<std::string, ir::Node *> vars;
for (ir::Node *node : result.Nodes()) {
if (node->IsVar() && node->Var()) {
// Note: The graph may have the same name node. For example, parameter
// is the input of operator and it also is the output of optimizer;
vars.emplace(node->Var()->Name(), node);
}
}
auto &group_grads_params =
result.Get<GroupGradsAndParams>(kGroupGradsAndParams);
// Note: the order of params_grads may be changed by SetGroupGradsAndParams.
SetGroupGradsAndParams(vars, params_grads, &group_grads_params);
params_grads.clear();
for (auto &group_p_g : group_grads_params) {
params_grads.insert(params_grads.begin(), group_p_g.begin(),
group_p_g.end());
}
for (auto &p_g : params_grads) {
std::swap(p_g.first, p_g.second);
}
// Set Gradients as Persistable to prevent this var becoming reusable.
auto dtype = kDefaultDtype;
for (auto &p_g : params_grads) {
// Get gradient var
auto iter = vars.find(p_g.second);
PADDLE_ENFORCE(iter != vars.end(), "%s is not found.", p_g.second);
iter->second->Var()->SetPersistable(true);
PADDLE_ENFORCE(IsSupportedVarType(iter->second->Var()->GetType()));
// Get Dtype
auto ele_dtype = iter->second->Var()->GetDataType();
if (dtype == kDefaultDtype) {
dtype = ele_dtype;
PADDLE_ENFORCE_NE(ele_dtype, kDefaultDtype);
}
PADDLE_ENFORCE_EQ(ele_dtype, dtype);
}
// Create the fused variable name.
if (!result.Has(kFusedVars)) {
result.Set(kFusedVars, new FusedVars);
}
const std::string prefix(kFusedVarNamePrefix);
// The fused_var_name should be unique.
auto fused_var_name = prefix + "GRAD@" + params_grads[0].second;
auto &fused_var_set = result.Get<FusedVars>(kFusedVars);
PADDLE_ENFORCE_EQ(fused_var_set.count(fused_var_name), 0);
fused_var_set.insert(fused_var_name);
InitFusedVarsAndAllocSpaceForVars(places, local_scopes, vars,
fused_var_name, params_grads);
return std::move(graph);
}
template <typename AttrType>
void ResetAttribute(const std::string &attr_name, ir::Graph *graph) const {
if (graph->Has(attr_name)) {
VLOG(10) << attr_name << " is reset.";
graph->Erase(attr_name);
}
graph->Set(attr_name, new AttrType);
}
void SetGroupGradsAndParams(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
const ParamsAndGrads &params_grads,
GroupGradsAndParams *group_grads_params) const {
SetGroupAccordingToLayers(var_nodes, params_grads, group_grads_params);
SetGroupAccordingToMemorySize(var_nodes, group_grads_params);
SetGroupAccordingToGroupSize(var_nodes, group_grads_params);
}
void SetGroupAccordingToLayers(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
const ParamsAndGrads &params_grads,
GroupGradsAndParams *group_grads_params) const {
std::unordered_map<std::string, std::vector<int>> layer_params;
for (size_t i = 0; i < params_grads.size(); ++i) {
auto pos = params_grads[i].first.find_first_of(".");
if (pos == std::string::npos) {
layer_params[std::string(kUnKnow)].emplace_back(i);
} else {
layer_params[params_grads[i].first.substr(0, pos)].emplace_back(i);
}
}
group_grads_params->reserve(layer_params.size());
for (size_t i = 0; i < params_grads.size(); ++i) {
auto pos = params_grads[i].first.find_first_of(".");
std::string key = kUnKnow;
if (pos != std::string::npos) {
key = params_grads[i].first.substr(0, pos);
}
auto iter = layer_params.find(key);
if (iter == layer_params.end()) continue;
group_grads_params->emplace_back();
auto &local_group_grads_params = group_grads_params->back();
for (auto &idx : iter->second) {
local_group_grads_params.emplace_back(
std::make_pair(params_grads[idx].second, params_grads[idx].first));
}
layer_params.erase(iter);
}
VLOG(10) << "SetGroupAccordingToLayers: ";
for (size_t i = 0; i < group_grads_params->size(); ++i) {
VLOG(10) << "group " << i;
std::stringstream out;
for (auto &p_g : group_grads_params->at(i)) {
out << "(" << p_g.second << ", " << p_g.first << "), ";
}
VLOG(10) << out.str();
}
}
void SetGroupAccordingToMemorySize(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
GroupGradsAndParams *group_grads_params) const {
if (FLAGS_fuse_parameter_memory_size == 0) {
return;
}
size_t group_memory_size =
static_cast<size_t>(FLAGS_fuse_parameter_memory_size);
GroupGradsAndParams local_group_grads_params;
size_t j = 0;
while (j < group_grads_params->size()) {
local_group_grads_params.emplace_back();
auto &group_p_g = local_group_grads_params.back();
size_t local_group_memory_size = 0;
while (j < group_grads_params->size()) {
std::for_each(
group_grads_params->at(j).begin(), group_grads_params->at(j).end(),
[&local_group_memory_size,
&var_nodes](const std::pair<std::string, std::string> &g_p) {
auto iter = var_nodes.find(g_p.second);
PADDLE_ENFORCE(iter != var_nodes.end(), "%s is not found.",
g_p.second);
auto shape = iter->second->Var()->GetShape();
size_t size =
framework::SizeOfType(iter->second->Var()->GetDataType());
std::for_each(shape.begin(), shape.end(),
[&size](const int64_t &n) { size *= n; });
local_group_memory_size += size;
});
group_p_g.insert(group_p_g.end(), group_grads_params->at(j).begin(),
group_grads_params->at(j).end());
++j;
if (local_group_memory_size >= group_memory_size) {
break;
}
}
}
std::swap(*group_grads_params, local_group_grads_params);
VLOG(10) << string::Sprintf(
"SetGroupAccordingToMemorySize(memory_size: %d):",
FLAGS_fuse_parameter_memory_size);
for (size_t i = 0; i < group_grads_params->size(); ++i) {
VLOG(10) << "group " << i;
std::stringstream out;
for (auto &g_p : group_grads_params->at(i)) {
auto iter = var_nodes.find(g_p.second);
PADDLE_ENFORCE(iter != var_nodes.end(), "%s is not found.", g_p.second);
auto shape = iter->second->Var()->GetShape();
size_t size = framework::SizeOfType(iter->second->Var()->GetDataType());
std::for_each(shape.begin(), shape.end(),
[&size](const int64_t &n) { size *= n; });
out << string::Sprintf("(%s(%d), %s)", g_p.second, size, g_p.first);
}
VLOG(10) << out.str();
}
}
void SetGroupAccordingToGroupSize(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
GroupGradsAndParams *group_grads_params) const {
if (FLAGS_fuse_parameter_groups_size == 1) {
return;
}
size_t group_size = static_cast<size_t>(FLAGS_fuse_parameter_groups_size);
if (FLAGS_fuse_parameter_groups_size == -1) {
group_size = group_grads_params->size();
}
PADDLE_ENFORCE_GT(group_size, 1);
size_t groups = (group_grads_params->size() + group_size - 1) / group_size;
GroupGradsAndParams local_group_grads_params;
local_group_grads_params.reserve(groups);
size_t j = 0;
for (size_t i = 0; i < groups; ++i) {
local_group_grads_params.emplace_back();
auto &group_p_g = local_group_grads_params.back();
group_p_g.reserve(group_size);
while (j < group_grads_params->size()) {
group_p_g.insert(group_p_g.end(), group_grads_params->at(j).begin(),
group_grads_params->at(j).end());
++j;
if (j % group_size == 0) break;
}
}
std::swap(*group_grads_params, local_group_grads_params);
VLOG(10) << "SetGroupAccordingToGroupSize(group_size: " << group_size
<< "): ";
for (size_t i = 0; i < group_grads_params->size(); ++i) {
VLOG(10) << "group " << i;
std::stringstream out;
for (auto &p_g : group_grads_params->at(i)) {
out << "(" << p_g.second << ", " << p_g.first << "), ";
}
VLOG(10) << out.str();
}
}
private:
bool IsSupportedVarType(const proto::VarType::Type &type) const {
// Current only support LOD_TENSOR.
return type == proto::VarType::LOD_TENSOR;
}
void AppendAllocSpaceForVarsOp(const std::vector<std::string> &params_name,
const std::vector<std::string> &grads_name,
const std::string &fused_var_name,
BlockDesc *global_block) const {
auto op_desc = global_block->AppendOp();
op_desc->SetType("alloc_continuous_space");
op_desc->SetInput("Input", params_name);
op_desc->SetOutput("Output", grads_name);
op_desc->SetOutput("FusedOutput", {fused_var_name});
}
void RecordParamsAndGrads(ir::Node *node,
ParamsAndGrads *params_grads) const {
try {
bool is_bk_op =
static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
OpProtoAndCheckerMaker::OpRoleAttrName())) &
static_cast<int>(OpRole::kBackward));
if (!is_bk_op) return;
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once.
auto backward_vars =
boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE_EQ(backward_vars.size() % 2, static_cast<size_t>(0));
for (size_t i = 0; i < backward_vars.size(); i += 2) {
VLOG(10) << "Trainable parameter: " << backward_vars[i]
<< ", gradient: " << backward_vars[i + 1];
params_grads->emplace_back(std::make_pair(
backward_vars[i] /*param*/, backward_vars[i + 1] /*grad*/));
}
} catch (boost::bad_get e) {
}
}
void InitFusedVarsAndAllocSpaceForVars(
const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const std::unordered_map<std::string, ir::Node *> &vars,
const std::string &fused_var_name,
const ParamsAndGrads &params_grads) const {
// Init Gradients and FusedVars
VLOG(10) << "Init FusedVars and Gradients.";
for (auto it = local_scopes.rbegin(); it != local_scopes.rend(); ++it) {
auto &scope = *it;
PADDLE_ENFORCE(scope->FindVar(fused_var_name) == nullptr,
"%s has existed in scope.", fused_var_name);
scope->Var(fused_var_name)->GetMutable<LoDTensor>();
for (auto &p_g : params_grads) {
auto iter = vars.find(p_g.second);
PADDLE_ENFORCE(iter != vars.end());
PADDLE_ENFORCE_NOT_NULL(iter->second->Var());
PADDLE_ENFORCE_EQ(iter->second->Var()->GetType(),
proto::VarType::LOD_TENSOR);
scope->Var(p_g.second)->GetMutable<LoDTensor>();
}
}
std::vector<std::string> grads_name;
std::vector<std::string> params_name;
grads_name.reserve(params_grads.size());
params_name.reserve(params_grads.size());
for (auto &p_g : params_grads) {
params_name.emplace_back(p_g.first);
grads_name.emplace_back(p_g.second);
}
framework::ProgramDesc program_desc;
AppendAllocSpaceForVarsOp(params_name, grads_name, fused_var_name,
program_desc.MutableBlock(0));
// Run Only Once Programs
for (size_t i = 0; i < local_scopes.size(); ++i) {
for (auto &op_desc : program_desc.Block(0).AllOps()) {
auto op = OpRegistry::CreateOp(*op_desc);
op->Run(*local_scopes[i], places[i]);
}
}
}
};
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(alloc_continuous_space_for_grad_pass,
paddle::framework::details::AllocContinuousSpaceForGradPass)
.RequirePassAttr(paddle::framework::details::kPlaces)
.RequirePassAttr(paddle::framework::details::kLocalScopes);
...@@ -57,7 +57,7 @@ struct BroadcastOpHandle : public OpHandleBase { ...@@ -57,7 +57,7 @@ struct BroadcastOpHandle : public OpHandleBase {
std::string Name() const override; std::string Name() const override;
bool IsMultiDeviceTransfer() override { return false; }; bool IsMultiDeviceTransfer() override { return true; };
protected: protected:
void RunImpl() override; void RunImpl() override;
......
...@@ -46,7 +46,16 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { ...@@ -46,7 +46,16 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
public: public:
explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy) explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
: ir::PassBuilder(), strategy_(strategy) { : ir::PassBuilder(), strategy_(strategy) {
// Add a graph viz pass to record a graph.
if (!strategy_.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
}
if (strategy_.enable_sequential_execution_) { if (strategy_.enable_sequential_execution_) {
VLOG(10) << "Add sequential_execution_pass";
AppendPass("sequential_execution_pass"); AppendPass("sequential_execution_pass");
} }
...@@ -57,6 +66,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { ...@@ -57,6 +66,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Add op fusion. // Add op fusion.
if (strategy.fuse_relu_depthwise_conv_) { if (strategy.fuse_relu_depthwise_conv_) {
VLOG(10) << "Add fuse_relu_depthwise_conv_pass";
AppendPass("fuse_relu_depthwise_conv_pass"); AppendPass("fuse_relu_depthwise_conv_pass");
} }
...@@ -68,27 +78,28 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { ...@@ -68,27 +78,28 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Add automatically inplace. // Add automatically inplace.
if (strategy_.enable_inplace_) { if (strategy_.enable_inplace_) {
VLOG(10) << "Add inplace_pass";
AppendPass("inplace_pass"); AppendPass("inplace_pass");
} }
// Add a graph viz pass to record a graph. if (strategy.fuse_elewise_add_act_ops_) {
if (!strategy_.debug_graphviz_path_.empty()) { VLOG(10) << "Add fuse_elewise_add_act_pass";
auto viz_pass = AppendPass("graph_viz_pass"); AppendPass("fuse_elewise_add_act_pass");
const std::string graph_path = string::Sprintf( }
"%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path)); // for single card training, fuse_all_reduce_ops is unnecessary.
// alloc_continuous_space_for_grad_pass should be before of MultiDevPass.
if (strategy.fuse_all_reduce_ops_) {
VLOG(10) << "Add alloc_continuous_space_for_grad_pass";
AppendPass("alloc_continuous_space_for_grad_pass");
} }
if (strategy.fuse_elewise_add_act_ops_) {
auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
// Add a graph viz pass to record a graph. // Add a graph viz pass to record a graph.
if (!strategy.debug_graphviz_path_.empty()) { if (!strategy.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass"); auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf( const std::string graph_path = string::Sprintf(
"%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph"); "%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
viz_pass->Set<std::string>("graph_viz_path", viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
new std::string(graph_path));
}
} }
CollectiveContext *context = CollectiveContext::GetInstance(); CollectiveContext *context = CollectiveContext::GetInstance();
...@@ -108,11 +119,19 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { ...@@ -108,11 +119,19 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// A side-effect of that, memory optimize cannot forsee the fetched vars // A side-effect of that, memory optimize cannot forsee the fetched vars
// , so fetchlist should be set persistable before call the Run interface. // , so fetchlist should be set persistable before call the Run interface.
if (strategy.memory_optimize_) { if (strategy.memory_optimize_) {
auto memory_optimize_pass = AppendPass("memory_optimize_pass"); VLOG(10) << "Add memory_optimize_pass";
AppendPass("memory_optimize_pass");
} }
AppendMultiDevPass(strategy); AppendMultiDevPass(strategy);
if (strategy.fuse_all_reduce_ops_) {
// NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
// first, if the number is zero, fuse_all_reduce_ops will do nothing.
VLOG(10) << "Add fuse_all_reduce_op_pass";
AppendPass("fuse_all_reduce_op_pass");
}
// Add a graph print pass to record a graph with device info. // Add a graph print pass to record a graph with device info.
if (!strategy_.debug_graphviz_path_.empty()) { if (!strategy_.debug_graphviz_path_.empty()) {
auto multi_devices_print_pass = AppendPass("multi_devices_print_pass"); auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
...@@ -128,28 +147,34 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder { ...@@ -128,28 +147,34 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Verify that the graph is correct for multi-device executor. // Verify that the graph is correct for multi-device executor.
AppendPass("multi_devices_check_pass"); AppendPass("multi_devices_check_pass");
if (VLOG_IS_ON(2)) {
AppendPass("all_reduce_deps_pass");
}
if (SeqOnlyAllReduceOps(strategy)) { if (SeqOnlyAllReduceOps(strategy)) {
VLOG(10) << "Add all_reduce_deps_pass";
AppendPass("all_reduce_deps_pass"); AppendPass("all_reduce_deps_pass");
} }
if (strategy_.remove_unnecessary_lock_) { if (strategy_.remove_unnecessary_lock_) {
VLOG(10) << "Add modify_op_lock_and_record_event_pass";
AppendPass("modify_op_lock_and_record_event_pass"); AppendPass("modify_op_lock_and_record_event_pass");
} }
} }
// Convert graph to run on multi-devices. // Convert graph to run on multi-devices.
void AppendMultiDevPass(const BuildStrategy &strategy) { void AppendMultiDevPass(const BuildStrategy &strategy) {
ir::Pass *multi_devices_pass; ir::Pass *multi_devices_pass = nullptr;
if (strategy_.is_distribution_) { if (strategy_.is_distribution_) {
VLOG(3) << "multi device parameter server mode"; VLOG(10) << "Add dist_multi_devices_pass";
multi_devices_pass = AppendPass("dist_multi_devices_pass").get(); multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
} else { } else {
if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) { if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
VLOG(3) << "multi devices collective mode with allreduce"; VLOG(10) << "Add all_reduce_mode_multi_devices_pass";
multi_devices_pass = multi_devices_pass =
AppendPass("allreduce_mode_multi_devices_pass").get(); AppendPass("all_reduce_mode_multi_devices_pass").get();
} else if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kReduce) { } else if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
VLOG(3) << "multi deivces collective mode with reduce"; VLOG(10) << "Add reduce_mode_multi_devices_pass";
multi_devices_pass = AppendPass("reduce_mode_multi_devices_pass").get(); multi_devices_pass = AppendPass("reduce_mode_multi_devices_pass").get();
} else { } else {
PADDLE_THROW("Unknown reduce strategy."); PADDLE_THROW("Unknown reduce strategy.");
...@@ -206,9 +231,26 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply( ...@@ -206,9 +231,26 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr; platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
pass->Erase("nccl_ctxs"); pass->Erase(kNCCLCtxs);
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx); pass->SetNotOwned<platform::NCCLContextMap>(kNCCLCtxs, nctx);
#endif #endif
} else if (pass->Type() == "fuse_all_reduce_op_pass") {
pass->Erase(kPlaces);
pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
pass->Erase(kLocalScopes);
pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
&local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
pass->Erase(kNCCLCtxs);
pass->SetNotOwned<platform::NCCLContextMap>(kNCCLCtxs, nctx);
#endif
} else if (pass->Type() == "alloc_continuous_space_for_grad_pass") {
pass->Erase(kPlaces);
pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
pass->Erase(kLocalScopes);
pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
&local_scopes);
} else if (pass->Type() == "sequential_execution_pass") { } else if (pass->Type() == "sequential_execution_pass") {
LOG(INFO) << "set enable_sequential_execution:" LOG(INFO) << "set enable_sequential_execution:"
<< enable_sequential_execution_; << enable_sequential_execution_;
...@@ -239,7 +281,7 @@ USE_PASS(fuse_elewise_add_act_pass); ...@@ -239,7 +281,7 @@ USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass); USE_PASS(graph_viz_pass);
USE_PASS(multi_batch_merge_pass); USE_PASS(multi_batch_merge_pass);
USE_PASS(reduce_mode_multi_devices_pass); USE_PASS(reduce_mode_multi_devices_pass);
USE_PASS(allreduce_mode_multi_devices_pass); USE_PASS(all_reduce_mode_multi_devices_pass);
USE_PASS(dist_multi_devices_pass); USE_PASS(dist_multi_devices_pass);
USE_PASS(multi_devices_check_pass); USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass); USE_PASS(multi_devices_print_pass);
...@@ -249,4 +291,6 @@ USE_PASS(all_reduce_deps_pass); ...@@ -249,4 +291,6 @@ USE_PASS(all_reduce_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass); USE_PASS(modify_op_lock_and_record_event_pass);
USE_PASS(inplace_pass); USE_PASS(inplace_pass);
USE_PASS(lock_free_optimize_pass); USE_PASS(lock_free_optimize_pass);
USE_PASS(alloc_continuous_space_for_grad_pass);
USE_PASS(graph_to_program_pass); USE_PASS(graph_to_program_pass);
USE_PASS(fuse_all_reduce_op_pass);
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include <memory> #include <memory>
#include <string> #include <string>
#include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/ir/pass_builder.h" #include "paddle/fluid/framework/ir/pass_builder.h"
...@@ -75,6 +76,8 @@ struct BuildStrategy { ...@@ -75,6 +76,8 @@ struct BuildStrategy {
bool fuse_elewise_add_act_ops_{false}; bool fuse_elewise_add_act_ops_{false};
bool fuse_all_reduce_ops_{false};
bool fuse_relu_depthwise_conv_{false}; bool fuse_relu_depthwise_conv_{false};
bool sync_batch_norm_{false}; bool sync_batch_norm_{false};
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
#include <algorithm>
#include "paddle/fluid/framework/details/container_cast.h"
namespace paddle {
namespace framework {
namespace details {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
DataBalanceOpHandle::DataBalanceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *ctxs)
: OpHandleBase(node), local_scopes_(local_scopes), places_(places) {
if (ctxs) {
for (auto &p : places_) {
this->SetDeviceContext(p, ctxs->DevCtx(p));
}
}
}
#else
DataBalanceOpHandle::DataBalanceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places)
: OpHandleBase(node), local_scopes_(local_scopes), places_(places) {}
#endif
std::string DataBalanceOpHandle::Name() const { return "data balance"; }
std::vector<std::array<int, 3>> DataBalanceOpHandle::GetBalancePlan(
const std::vector<int> &device_sizes) {
int device_num = device_sizes.size();
int total_size = 0;
int empty_num = 0;
std::vector<std::array<int, 2>> size_device_vec;
size_device_vec.reserve(device_num);
for (int i = 0; i < device_num; ++i) {
if (device_sizes[i] == 0) {
++empty_num;
}
total_size += device_sizes[i];
size_device_vec.push_back({{device_sizes[i], i}});
}
std::vector<std::array<int, 3>> res;
if (empty_num == 0) {
// No need to do data balance.
return res;
}
if (total_size < device_num) {
// No enough data.
PADDLE_THROW_EOF();
}
std::sort(size_device_vec.begin(), size_device_vec.end(),
[](const std::array<int, 2> &a, const std::array<int, 2> &b) {
return a[0] > b[0];
});
int expected_device_size = total_size / device_num;
int src_idx = 0;
for (int dst_idx = device_num - empty_num; dst_idx < device_num; ++dst_idx) {
if (size_device_vec[src_idx][0] <= expected_device_size) {
++src_idx;
PADDLE_ENFORCE_LT(
src_idx, device_num - empty_num,
"In current srategy an empty tensor should not be copy source.");
}
size_device_vec[src_idx][0] -= expected_device_size;
size_device_vec[dst_idx][0] += expected_device_size;
res.push_back({{size_device_vec[src_idx][1], size_device_vec[dst_idx][1],
expected_device_size}});
}
return res;
}
void DataBalanceOpHandle::RunImpl() {
PADDLE_ENFORCE_GT(places_.size(), 1UL,
"Data balance can only be enabled when the number of "
"places to run larger than 1.");
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE(in_var_handles.size() % places_.size() == 0);
PADDLE_ENFORCE_EQ(
in_var_handles.size(), out_var_handles.size(),
"The NoDummyInputSize and NoDummyOutputSize should be equal.");
int data_num = in_var_handles.size() / places_.size();
WaitInputVarGenerated();
std::vector<std::vector<LoDTensor *>> lod_tensors(data_num);
std::vector<int> device_sizes;
for (int i = 0; i < static_cast<int>(in_var_handles.size()); ++i) {
PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(),
"The name of input and output should be equal.");
int place_idx = i / data_num;
int data_idx = i % data_num;
auto *local_scope =
local_scopes_[place_idx]->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto *tensor_var = local_scope->FindVar(in_var_handles[i]->name());
PADDLE_ENFORCE(tensor_var->IsType<LoDTensor>());
auto *tensor = tensor_var->GetMutable<LoDTensor>();
lod_tensors[data_idx].push_back(tensor);
int ins_size =
tensor->lod().empty() ? tensor->dims()[0] : tensor->NumElements();
if (data_idx == 0) {
device_sizes.emplace_back(ins_size);
} else {
PADDLE_ENFORCE_EQ(
ins_size, device_sizes.at(place_idx),
"All data on the same device shall have the same batch size.");
}
}
const auto &balance_plan = GetBalancePlan(device_sizes);
for (const auto &trans : balance_plan) {
for (int data_idx = 0; data_idx < data_num; ++data_idx) {
LoDTensor *src_tensor = lod_tensors[data_idx][trans[0]];
LoDTensor *dst_tensor = lod_tensors[data_idx][trans[1]];
int trans_ins_size = trans[2];
LoD src_lod = src_tensor->lod();
int src_ins_size =
src_lod.empty() ? src_tensor->dims()[0] : src_tensor->NumElements();
int cut_point = src_ins_size - trans_ins_size;
if (!src_lod.empty()) {
for (auto &level : src_lod) {
cut_point = level[cut_point];
}
}
TensorCopySync(src_tensor->Slice(cut_point, src_tensor->dims()[0]),
dst_tensor->place(), dst_tensor);
src_tensor->ShareDataWith(src_tensor->Slice(0, cut_point));
if (!src_lod.empty()) {
dst_tensor->set_lod(SliceInLevel(
src_lod, 0, src_ins_size - trans_ins_size, src_ins_size));
src_tensor->set_lod(
SliceInLevel(src_lod, 0, 0, src_ins_size - trans_ins_size));
}
}
}
}
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -82,6 +82,8 @@ void FetchOpHandle::WaitInputVarGenerated(const platform::Place &place) { ...@@ -82,6 +82,8 @@ void FetchOpHandle::WaitInputVarGenerated(const platform::Place &place) {
} }
} }
bool FetchOpHandle::IsMultiDeviceTransfer() { return true; }
std::string FetchOpHandle::Name() const { return "Fetch"; } std::string FetchOpHandle::Name() const { return "Fetch"; }
} // namespace details } // namespace details
......
...@@ -39,6 +39,8 @@ struct FetchOpHandle : public OpHandleBase { ...@@ -39,6 +39,8 @@ struct FetchOpHandle : public OpHandleBase {
std::string Name() const override; std::string Name() const override;
bool IsMultiDeviceTransfer() override;
protected: protected:
void RunImpl() override; void RunImpl() override;
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/fused_all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace details {
class FuseAllReduceOpPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override {
ir::Graph &result = *graph;
auto &places = Get<const std::vector<platform::Place>>(kPlaces);
auto &local_scopes = Get<const std::vector<Scope *>>(kLocalScopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *nccl_ctxs = &Get<platform::NCCLContextMap>(kNCCLCtxs);
#endif
std::unordered_set<std::string> grads;
auto &params_grads = result.Get<ParamsAndGrads>(kParamsAndGrads);
size_t num_of_all_reduce = params_grads.size();
grads.reserve(num_of_all_reduce);
for (auto p_g : params_grads) {
grads.insert(p_g.second);
}
size_t num_place = places.size();
std::unordered_map<std::string, ir::Node *> all_reduce_ops;
all_reduce_ops.reserve(grads.size());
for (auto &node : result.Nodes()) {
if (node->IsOp()) {
PADDLE_ENFORCE(node->IsWrappedBy<OpHandleBase>());
auto *all_reduce_op_handle =
dynamic_cast<AllReduceOpHandle *>(&node->Wrapper<OpHandleBase>());
if (all_reduce_op_handle) {
auto inputs = DynamicCast<VarHandle>(all_reduce_op_handle->Inputs());
PADDLE_ENFORCE_EQ(inputs.size(), num_place);
// The inputs' name should be the same.
auto &grad_name = inputs[0]->name();
for (size_t i = 1; i < inputs.size(); ++i) {
PADDLE_ENFORCE_EQ(inputs[i]->name(), grad_name,
"The input name should be the same.");
}
PADDLE_ENFORCE_NE(grads.count(grad_name), static_cast<size_t>(0));
all_reduce_ops.emplace(grad_name, node);
}
}
}
VLOG(10) << "Find all_reduce_ops: " << all_reduce_ops.size();
if (all_reduce_ops.size() == 0) {
return std::move(graph);
}
PADDLE_ENFORCE_EQ(all_reduce_ops.size(), grads.size(),
"The number of all_reduce OpHandle is not equal to the "
"number of grads. Maybe some gradients are sparse type, "
"it is not supported currently.");
VLOG(10) << "Insert fused_all_reduce";
auto &group_grads_params =
graph->Get<GroupGradsAndParams>(kGroupGradsAndParams);
for (auto &group_g_p : group_grads_params) {
size_t group_size = group_g_p.size();
PADDLE_ENFORCE_GT(group_size, static_cast<size_t>(0));
std::vector<ir::Node *> group_all_reduce_ops;
group_all_reduce_ops.reserve(group_size);
for (auto &g_p : group_g_p) {
group_all_reduce_ops.emplace_back(all_reduce_ops.at(g_p.first));
}
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
InsertFusedAllReduce(places, local_scopes, group_size,
group_all_reduce_ops, nccl_ctxs, &result);
#else
InsertFusedAllReduce(places, local_scopes, group_size,
group_all_reduce_ops, &result);
#endif
}
return std::move(graph);
}
void InsertFusedAllReduce(const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const size_t num_of_all_reduce,
const std::vector<ir::Node *> &all_reduce_ops,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs,
#endif
ir::Graph *result) const {
std::vector<VarHandleBase *> inputs;
std::vector<VarHandleBase *> outputs;
for (auto &op : all_reduce_ops) {
auto &op_handle = op->Wrapper<OpHandleBase>();
inputs.insert(inputs.end(), op_handle.Inputs().begin(),
op_handle.Inputs().end());
// Remove output
for_each(op_handle.Inputs().begin(), op_handle.Inputs().end(),
[&op_handle](VarHandleBase *var_handle) {
var_handle->RemoveOutput(&op_handle, op_handle.Node());
});
outputs.insert(outputs.end(), op_handle.Outputs().begin(),
op_handle.Outputs().end());
// Remove Input
for_each(
op_handle.Outputs().begin(), op_handle.Outputs().end(),
[](VarHandleBase *var_handle) { var_handle->ClearGeneratedOp(); });
result->RemoveNode(op_handle.Node());
}
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
CreateFusedAllReduceOp(inputs, outputs, num_of_all_reduce, places,
local_scopes, nccl_ctxs, result);
#else
CreateFusedAllReduceOp(inputs, outputs, num_of_all_reduce, places,
local_scopes, result);
#endif
}
private:
void CreateFusedAllReduceOp(const std::vector<VarHandleBase *> &inputs,
const std::vector<VarHandleBase *> &outputs,
const size_t num_of_all_reduce,
const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs,
#endif
ir::Graph *result) const {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *op_handle = new FusedAllReduceOpHandle(
result->CreateEmptyNode("fused_all_reduce", ir::Node::Type::kOperation),
local_scopes, places, num_of_all_reduce, nccl_ctxs);
#else
auto *op_handle = new FusedAllReduceOpHandle(
result->CreateEmptyNode("fused_all_reduce", ir::Node::Type::kOperation),
local_scopes, places, num_of_all_reduce);
#endif
for (auto in : inputs) {
op_handle->AddInput(in);
}
for (auto out : outputs) {
op_handle->AddOutput(out);
}
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if (!nccl_ctxs) {
SetCommunicationContext(places, op_handle);
}
#else
SetCommunicationContext(places, op_handle);
#endif
}
void SetCommunicationContext(const std::vector<platform::Place> &places,
FusedAllReduceOpHandle *op_handle) const {
for (size_t i = 0; i < places.size(); ++i) {
op_handle->SetDeviceContext(
places[i], platform::DeviceContextPool::Instance().Get(places[i]));
}
}
};
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(fuse_all_reduce_op_pass,
paddle::framework::details::FuseAllReduceOpPass);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fuse_vars_op_handle.h"
namespace paddle {
namespace framework {
namespace details {
void FuseVarsOpHandle::RunImpl() {
WaitInputVarGenerated(place_);
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE_EQ(in_var_handles.size(), 0UL);
PADDLE_ENFORCE_EQ(out_var_handles.size() - 1, inputs_numel_.size(), "");
auto scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto out_var_handle = out_var_handles[0];
auto out_var = scope->Var(out_var_handle->name());
auto out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->Resize({total_numel_}).mutable_data(this->place_, type_);
int64_t s = 0;
for (size_t i = 1; i < out_var_handles.size(); ++i) {
auto out_name = out_var_handles[i]->name();
auto out_t = scope->Var(out_name)->GetMutable<LoDTensor>();
auto numel = this->inputs_numel_.at(out_name);
out_t->ShareDataWith(out_tensor->Slice(s, s + numel));
s += numel;
}
this->RunAndRecordEvent([] {});
}
std::string FuseVarsOpHandle::Name() const { return "fuse vars"; }
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace framework {
namespace details {
struct FuseVarsOpHandle : public OpHandleBase {
public:
FuseVarsOpHandle(ir::Node *node, Scope *local_scope,
const platform::Place &place,
const std::unordered_map<std::string, int64_t> &inputs_numel,
const proto::VarType::Type var_type)
: OpHandleBase(node),
local_scope_(local_scope),
place_(place),
inputs_numel_(inputs_numel),
type_(var_type) {
total_numel_ = 0;
for (auto in_numel : inputs_numel) {
PADDLE_ENFORCE_GT(in_numel.second, 0);
total_numel_ += in_numel.second;
}
}
std::string Name() const override;
bool IsMultiDeviceTransfer() override { return false; };
protected:
void RunImpl() override;
private:
Scope *local_scope_;
const platform::Place place_;
const std::unordered_map<std::string, int64_t> inputs_numel_;
const proto::VarType::Type type_;
int64_t total_numel_;
};
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fused_all_reduce_op_handle.h"
#include <algorithm>
#include <utility>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool(skip_fused_all_reduce_check, false, "");
namespace paddle {
namespace framework {
namespace details {
typedef std::vector<std::vector<std::pair<std::string, const LoDTensor *>>>
GradientAndLoDTensor;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
FusedAllReduceOpHandle::FusedAllReduceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const size_t num_of_all_reduce,
const platform::NCCLContextMap *ctxs)
: OpHandleBase(node),
local_scopes_(local_scopes),
places_(places),
num_of_all_reduce_(num_of_all_reduce),
nccl_ctxs_(ctxs) {
if (nccl_ctxs_) {
for (auto &p : places_) {
this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p));
}
}
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
}
#else
FusedAllReduceOpHandle::FusedAllReduceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const size_t num_of_all_reduce)
: OpHandleBase(node),
local_scopes_(local_scopes),
places_(places),
num_of_all_reduce_(num_of_all_reduce) {
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
}
#endif
void FusedAllReduceOpHandle::RunImpl() {
platform::RecordEvent record_event(Name());
VLOG(4) << this->DebugString();
WaitInputVarGenerated();
// The input: grad0(dev0), grad0(dev1), grad1(dev0), grad1(dev1)...
// The output: grad0(dev0), grad0(dev1), grad1(dev0), grad1(dev1)...
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
size_t place_num = places_.size();
PADDLE_ENFORCE_EQ(
in_var_handles.size(), place_num * num_of_all_reduce_,
"The NoDummyInputSize should be equal to the number of places.");
PADDLE_ENFORCE_EQ(
in_var_handles.size(), out_var_handles.size(),
"The NoDummyInputSize and NoDummyOutputSize should be equal.");
GradientAndLoDTensor grads_tensor;
grads_tensor.resize(place_num);
int64_t numel = -1;
auto dtype = static_cast<framework::proto::VarType::Type>(0);
for (size_t scope_idx = 0; scope_idx < local_scopes_.size(); ++scope_idx) {
auto &g_tensor = grads_tensor.at(scope_idx);
g_tensor.reserve(num_of_all_reduce_);
GetGradLoDTensor(scope_idx, in_var_handles, out_var_handles, &g_tensor);
int64_t element_num = 0;
framework::proto::VarType::Type ele_dtype =
static_cast<framework::proto::VarType::Type>(0);
GetDTypeAndNumel(g_tensor, &ele_dtype, &element_num);
if (numel == -1) {
numel = element_num;
}
if (dtype == static_cast<framework::proto::VarType::Type>(0)) {
dtype = ele_dtype;
PADDLE_ENFORCE_NE(ele_dtype,
static_cast<framework::proto::VarType::Type>(0));
}
PADDLE_ENFORCE_EQ(ele_dtype, dtype);
// Check whether the address space is contiguous.
std::sort(
g_tensor.begin(), g_tensor.end(),
[](const std::pair<std::string, const LoDTensor *> &grad1,
const std::pair<std::string, const LoDTensor *> &grad2) -> bool {
return grad1.second->data<void>() < grad2.second->data<void>();
});
for (size_t k = 1; k < g_tensor.size(); ++k) {
const void *cur_address = g_tensor.at(k - 1).second->data<void>();
int64_t len = g_tensor.at(k - 1).second->numel();
auto offset = len * framework::SizeOfType(dtype);
void *infer_next_address = reinterpret_cast<void *>(
reinterpret_cast<uintptr_t>(cur_address) + offset);
const void *next_address = g_tensor.at(k).second->data<void>();
VLOG(10) << string::Sprintf(
"Input[%d](%s) address: 0X%02x, Input[%d](%s) address: 0X%02x, Infer "
"input[%d] address: 0X%02x. The offset: %d",
k - 1, g_tensor.at(k - 1).first, cur_address, g_tensor.at(k).first, k,
next_address, k, infer_next_address, offset);
PADDLE_ENFORCE_EQ(infer_next_address, next_address,
"The address is not consistent.");
}
}
if (!FLAGS_skip_fused_all_reduce_check) {
for (size_t scope_idx = 0; scope_idx < place_num; ++scope_idx) {
for (size_t j = 1; j < num_of_all_reduce_; ++j) {
PADDLE_ENFORCE_EQ(grads_tensor.at(0).at(j).first,
grads_tensor.at(scope_idx).at(j).first);
}
}
}
std::vector<const void *> lod_tensor_data;
for (size_t scope_idx = 0; scope_idx < place_num; ++scope_idx) {
auto data = grads_tensor.at(scope_idx).at(0).second->data<void>();
lod_tensor_data.emplace_back(data);
}
if (platform::is_gpu_place(places_[0])) {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
int nccl_dtype = platform::ToNCCLDataType(dtype);
std::vector<std::function<void()>> all_reduce_calls;
for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &p = places_[i];
void *buffer = const_cast<void *>(lod_tensor_data.at(i));
int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_;
all_reduce_calls.emplace_back([=] {
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
buffer, buffer, numel, static_cast<ncclDataType_t>(nccl_dtype),
ncclSum, comm, stream));
});
}
this->RunAndRecordEvent([&] {
if (all_reduce_calls.size() == 1UL) {
// Do not use NCCLGroup when manage NCCL by per thread per device
all_reduce_calls[0]();
} else {
platform::NCCLGroupGuard guard;
for (auto &call : all_reduce_calls) {
call();
}
}
});
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
} else {
// Special handle CPU only Operator's gradient. Like CRF
auto grad_name = grads_tensor.at(0).at(0).first;
auto &trg = *this->local_scopes_[0]
->FindVar(kLocalExecScopeName)
->Get<Scope *>()
->FindVar(grad_name)
->GetMutable<framework::LoDTensor>();
// Reduce All data to trg in CPU
ReduceBufferData func(lod_tensor_data, trg.data<void>(), numel);
VisitDataType(trg.type(), func);
for (size_t i = 1; i < local_scopes_.size(); ++i) {
auto &scope =
*local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto &p = places_[i];
auto *var = scope.FindVar(grad_name);
auto *dev_ctx = dev_ctxes_.at(p);
size_t size = numel * SizeOfType(trg.type());
RunAndRecordEvent(p, [&trg, var, dev_ctx, p, size] {
auto dst_ptr = var->GetMutable<framework::LoDTensor>()->data<void>();
platform::CPUPlace cpu_place;
memory::Copy(cpu_place, dst_ptr, cpu_place, trg.data<void>(), size);
});
}
}
}
void FusedAllReduceOpHandle::GetGradLoDTensor(
const size_t &scope_idx, const std::vector<VarHandle *> &in_var_handles,
const std::vector<VarHandle *> &out_var_handles,
std::vector<std::pair<std::string, const LoDTensor *>> *grad_tensor) const {
auto *local_scope =
local_scopes_.at(scope_idx)->FindVar(kLocalExecScopeName)->Get<Scope *>();
size_t place_num = places_.size();
for (size_t j = 0; j < in_var_handles.size(); j += place_num) {
auto var_name = in_var_handles[j]->name();
PADDLE_ENFORCE_EQ(var_name, out_var_handles[j]->name());
auto &lod_tensor = local_scope->FindVar(var_name)->Get<LoDTensor>();
PADDLE_ENFORCE_EQ(lod_tensor.place(), places_.at(scope_idx));
grad_tensor->emplace_back(std::make_pair(var_name, &lod_tensor));
}
}
void FusedAllReduceOpHandle::GetDTypeAndNumel(
const std::vector<std::pair<std::string, const LoDTensor *>> &grad_tensor,
proto::VarType::Type *dtype, int64_t *numel) const {
*numel = 0;
for (size_t i = 0; i < grad_tensor.size(); ++i) {
// Get element number
int64_t len = grad_tensor.at(i).second->numel();
PADDLE_ENFORCE_GT(len, 0);
*numel += len;
// Get dtype
auto ele_type = grad_tensor.at(i).second->type();
if (i == 0) {
*dtype = ele_type;
}
PADDLE_ENFORCE_EQ(ele_type, *dtype);
}
}
std::string FusedAllReduceOpHandle::Name() const { return "fused_all_reduce"; }
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#pragma once #pragma once
#include <string> #include <string>
#include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
...@@ -27,31 +28,47 @@ namespace paddle { ...@@ -27,31 +28,47 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
struct DataBalanceOpHandle : public OpHandleBase { struct FusedAllReduceOpHandle : public OpHandleBase {
public:
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
DataBalanceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes, FusedAllReduceOpHandle(ir::Node *node,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const size_t num_of_all_reduce,
const platform::NCCLContextMap *ctxs); const platform::NCCLContextMap *ctxs);
#else #else
DataBalanceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes, FusedAllReduceOpHandle(ir::Node *node,
const std::vector<platform::Place> &places); const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const size_t num_of_all_reduce);
#endif #endif
std::string Name() const override; std::string Name() const override;
bool IsMultiDeviceTransfer() override { return false; }; // Delay and buffer nccl_all_reduce together can significantly increase
// performance. Disable this feature by returning false.
bool IsMultiDeviceTransfer() override { return true; };
protected: protected:
void RunImpl() override; void RunImpl() override;
private: private:
// std::vector<(src_dev_id, dst_dev_id, trans_size)> std::vector<Scope *> local_scopes_;
std::vector<std::array<int, 3>> GetBalancePlan( std::vector<platform::Place> places_;
const std::vector<int> &batch_size_per_device); size_t num_of_all_reduce_;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs_;
#endif
// Check the dtype of the input
void GetDTypeAndNumel(
const std::vector<std::pair<std::string, const LoDTensor *>> &g_tensor,
proto::VarType::Type *dtype, int64_t *total_num) const;
const std::vector<Scope *> local_scopes_; // Get gradient's name and LoDTensor
const std::vector<platform::Place> places_; void GetGradLoDTensor(const size_t &scope_idx,
const std::vector<VarHandle *> &in_var_handles,
const std::vector<VarHandle *> &out_var_handles,
std::vector<std::pair<std::string, const LoDTensor *>>
*grad_tensor) const;
}; };
} // namespace details } // namespace details
......
...@@ -11,18 +11,19 @@ ...@@ -11,18 +11,19 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include <algorithm> #include <algorithm>
#include <fstream> #include <fstream>
#include <memory>
#include <string> #include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h" #include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h" #include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h" #include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" #include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
...@@ -134,21 +135,26 @@ void AddOutputToLeafOps(ir::Graph *graph) { ...@@ -134,21 +135,26 @@ void AddOutputToLeafOps(ir::Graph *graph) {
} }
} // namespace } // namespace
void MultiDevSSAGraphBuilderBase::CheckGraph(const ir::Graph &graph) const {}
void MultiDevSSAGraphBuilderBase::Init() const { void MultiDevSSAGraphBuilderBase::Init() const {
all_vars_.clear(); all_vars_.clear();
loss_var_name_ = Get<const std::string>(kLossVarName); loss_var_name_ = Get<const std::string>(kLossVarName);
VLOG(10) << "Init MultiDevSSAGraphBuilder, loss name: " << loss_var_name_;
places_ = Get<const std::vector<platform::Place>>(kPlaces); places_ = Get<const std::vector<platform::Place>>(kPlaces);
local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes); local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
strategy_ = Get<const BuildStrategy>(kStrategy); strategy_ = Get<const BuildStrategy>(kStrategy);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs"); nccl_ctxs_ = &Get<platform::NCCLContextMap>(kNCCLCtxs);
#endif #endif
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
} }
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl( std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const { std::unique_ptr<ir::Graph> graph) const {
Init(); Init();
CheckGraph(*graph);
std::vector<ir::Node *> sorted_ops = SortOperations(*graph); std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
auto nodes = graph->ReleaseNodes(); auto nodes = graph->ReleaseNodes();
...@@ -166,7 +172,6 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl( ...@@ -166,7 +172,6 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
result.Set(kGraphOps, new GraphOps); result.Set(kGraphOps, new GraphOps);
bool is_forwarding = true; bool is_forwarding = true;
bool insert_collection_ops = NeedCollectiveOps();
for (ir::Node *node : sorted_ops) { for (ir::Node *node : sorted_ops) {
if (DealWithSpecialOp(&result, node)) { if (DealWithSpecialOp(&result, node)) {
...@@ -185,8 +190,8 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl( ...@@ -185,8 +190,8 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
CreateComputationalOps(&result, node, places_.size()); CreateComputationalOps(&result, node, places_.size());
} }
// Insert collection ops // Insert collective ops if nranks > 1
if (!is_forwarding && insert_collection_ops) { if (!is_forwarding && Get<size_t>(kNRanks) > 1) {
try { try {
bool is_bk_op = bool is_bk_op =
static_cast<bool>(boost::get<int>(node->Op()->GetAttr( static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
...@@ -200,14 +205,14 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl( ...@@ -200,14 +205,14 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr( boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
OpProtoAndCheckerMaker::OpRoleVarAttrName())); OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0); PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
for (size_t i = 0; i < backward_vars.size(); i += 2) { for (size_t i = 0; i < backward_vars.size(); i += 2) {
auto &p_name = backward_vars[i]; auto &p_name = backward_vars[i];
auto &g_name = backward_vars[i + 1]; auto &g_name = backward_vars[i + 1];
VLOG(10) << "Bcast " << g_name << " for parameter " << p_name; VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
if (NeedCollectiveForGrad(g_name, sorted_ops)) {
InsertCollectiveOp(&result, p_name, g_name); InsertCollectiveOp(&result, p_name, g_name);
} }
}
} catch (boost::bad_get e) { } catch (boost::bad_get e) {
} }
} }
...@@ -226,6 +231,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl( ...@@ -226,6 +231,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
* Only variables should be the leaves of graph. * Only variables should be the leaves of graph.
*/ */
AddOutputToLeafOps(&result); AddOutputToLeafOps(&result);
result.Erase(kGraphOps); result.Erase(kGraphOps);
return graph; return graph;
} }
...@@ -258,6 +264,11 @@ void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp( ...@@ -258,6 +264,11 @@ void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
} }
} }
bool MultiDevSSAGraphBuilderBase::DealWithSpecialOp(ir::Graph *result,
ir::Node *node) const {
return false;
}
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations( std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
const ir::Graph &graph) const { const ir::Graph &graph) const {
return ir::TopologySortOperations(graph); return ir::TopologySortOperations(graph);
...@@ -271,8 +282,20 @@ bool MultiDevSSAGraphBuilderBase::UseGPU() const { ...@@ -271,8 +282,20 @@ bool MultiDevSSAGraphBuilderBase::UseGPU() const {
return use_gpu; return use_gpu;
} }
bool MultiDevSSAGraphBuilderBase::NeedCollectiveOps() const { bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad(
return Get<size_t>(kNRanks) > 1; const std::string &grad_name, std::vector<ir::Node *> ops) const {
// if we have allreduce_op for current gradient variable in the graph,
// then we don't need to add allreduce_op_handle for this gradient
// NOTE: This is for the case that all gradients should add collective ops
for (auto *node : ops) {
if (node->Op()->Type() != "allreduce") continue;
for (auto in_name : node->Op()->InputArgumentNames()) {
if (in_name == grad_name) {
return false;
}
}
}
return true;
} }
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result, void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
...@@ -496,20 +519,17 @@ VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result, ...@@ -496,20 +519,17 @@ VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result,
} }
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const { bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
return boost::get<int>( return !loss_var_name_.empty() && node->Op() &&
boost::get<int>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) == node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
(static_cast<int>(OpRole::kBackward) | (static_cast<int>(OpRole::kBackward) |
static_cast<int>(OpRole::kLoss)) && static_cast<int>(OpRole::kLoss));
!loss_var_name_.empty(); // If loss_var is empty. This is test mode
} }
bool MultiDevSSAGraphBuilderBase::IsSparseGradient( bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
const std::string &og) const { const std::string &og) const {
PADDLE_ENFORCE(all_vars_.count(og) != 0); PADDLE_ENFORCE(all_vars_.count(og) != 0);
if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) { return all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS;
return true;
}
return false;
} }
void AllReduceSSAGraphBuilder::InsertCollectiveOp( void AllReduceSSAGraphBuilder::InsertCollectiveOp(
...@@ -995,7 +1015,7 @@ static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) { ...@@ -995,7 +1015,7 @@ static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass, REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
paddle::framework::details::ReduceSSAGraphBuilder); paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS( REGISTER_MULTI_DEVICES_PASS(
allreduce_mode_multi_devices_pass, all_reduce_mode_multi_devices_pass,
paddle::framework::details::AllReduceSSAGraphBuilder); paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass, REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
paddle::framework::details::DistSSAGraphBuilder); paddle::framework::details::DistSSAGraphBuilder);
...@@ -14,7 +14,10 @@ ...@@ -14,7 +14,10 @@
#pragma once #pragma once
#include <memory>
#include <string> #include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility> #include <utility>
#include <vector> #include <vector>
...@@ -31,12 +34,6 @@ namespace framework { ...@@ -31,12 +34,6 @@ namespace framework {
class Scope; class Scope;
namespace details { namespace details {
constexpr char kLossVarName[] = "loss_var_name";
constexpr char kPlaces[] = "places";
constexpr char kLocalScopes[] = "local_scopes";
constexpr char kStrategy[] = "strategy";
constexpr char kNRanks[] = "nranks";
class MultiDevSSAGraphBuilderBase : public ir::Pass { class MultiDevSSAGraphBuilderBase : public ir::Pass {
protected: protected:
std::unique_ptr<ir::Graph> ApplyImpl( std::unique_ptr<ir::Graph> ApplyImpl(
...@@ -44,18 +41,21 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass { ...@@ -44,18 +41,21 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass {
virtual void Init() const; virtual void Init() const;
virtual void CheckGraph(const ir::Graph &graph) const;
virtual std::vector<ir::Node *> SortOperations(const ir::Graph &graph) const; virtual std::vector<ir::Node *> SortOperations(const ir::Graph &graph) const;
virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name, virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name,
const std::string &g_name) const = 0; const std::string &g_name) const = 0;
virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const = 0; virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const;
virtual void InsertPostprocessOps(ir::Graph *result) const = 0; virtual void InsertPostprocessOps(ir::Graph *result) const = 0;
bool UseGPU() const; bool UseGPU() const;
bool NeedCollectiveOps() const; bool NeedCollectiveForGrad(const std::string &grad_name,
std::vector<ir::Node *> ops) const;
bool IsScaleLossOp(ir::Node *node) const; bool IsScaleLossOp(ir::Node *node) const;
...@@ -109,10 +109,6 @@ class AllReduceSSAGraphBuilder : public MultiDevSSAGraphBuilderBase { ...@@ -109,10 +109,6 @@ class AllReduceSSAGraphBuilder : public MultiDevSSAGraphBuilderBase {
virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name, virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name,
const std::string &g_name) const; const std::string &g_name) const;
virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const {
return false;
}
virtual void InsertPostprocessOps(ir::Graph *result) const {} virtual void InsertPostprocessOps(ir::Graph *result) const {}
}; };
......
...@@ -16,6 +16,9 @@ ...@@ -16,6 +16,9 @@
#include <memory> #include <memory>
#include <string> #include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/details/op_handle_base.h"
...@@ -44,6 +47,26 @@ const char kGraphVars[] = "vars"; ...@@ -44,6 +47,26 @@ const char kGraphVars[] = "vars";
typedef std::unordered_set<VarHandleBase *> GraphDepVars; typedef std::unordered_set<VarHandleBase *> GraphDepVars;
const char kGraphDepVars[] = "dep_vars"; const char kGraphDepVars[] = "dep_vars";
constexpr char kNCCLCtxs[] = "nccl_ctxs";
constexpr char kLossVarName[] = "loss_var_name";
constexpr char kPlaces[] = "places";
constexpr char kLocalScopes[] = "local_scopes";
constexpr char kStrategy[] = "strategy";
constexpr char kNRanks[] = "nranks";
typedef std::unordered_set<std::string> FusedVars;
constexpr char kFusedVars[] = "fused_vars";
typedef std::vector<std::pair<std::string, std::string>> ParamsAndGrads;
constexpr char kParamsAndGrads[] = "params_grads";
typedef std::vector<std::vector<std::pair<std::string, std::string>>>
GroupGradsAndParams;
constexpr char kGroupGradsAndParams[] = "group_grads_params";
constexpr char kFusedVarNamePrefix[] = "@FUSEDVAR@";
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/details/op_handle_base.h"
#include <map> #include <map>
#include <unordered_set>
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -41,15 +42,42 @@ OpHandleBase::~OpHandleBase() { ...@@ -41,15 +42,42 @@ OpHandleBase::~OpHandleBase() {
void OpHandleBase::Run(bool use_cuda) { void OpHandleBase::Run(bool use_cuda) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
if (events_.empty() && use_cuda) { if (events_.empty() && use_cuda && dev_ctxes_.size() > 0) {
for (auto &p : dev_ctxes_) { for (auto &p : dev_ctxes_) {
int dev_id = boost::get<platform::CUDAPlace>(p.first).device; int dev_id = boost::get<platform::CUDAPlace>(p.first).device;
PADDLE_ENFORCE(cudaSetDevice(dev_id)); PADDLE_ENFORCE(cudaSetDevice(dev_id));
PADDLE_ENFORCE( PADDLE_ENFORCE(
cudaEventCreateWithFlags(&events_[dev_id], cudaEventDisableTiming)); cudaEventCreateWithFlags(&events_[dev_id], cudaEventDisableTiming));
} }
if (IsMultiDeviceTransfer() && dev_ctxes_.size() > 0) {
for (auto &out_var : outputs_) {
auto *out_var_handle = dynamic_cast<VarHandle *>(out_var);
if (out_var_handle) {
int dev_id =
boost::get<platform::CUDAPlace>(out_var_handle->place()).device;
out_var_handle->SetGenerateEvent(events_[dev_id]);
}
}
} else {
PADDLE_ENFORCE_EQ(dev_ctxes_.size(), 1UL,
"%s should have only one dev_ctx.", Name());
auto &place = dev_ctxes_.begin()->first;
int dev_id = boost::get<platform::CUDAPlace>(place).device;
for (auto &out_var : outputs_) {
auto *out_var_handle = dynamic_cast<VarHandle *>(out_var);
if (out_var_handle) {
PADDLE_ENFORCE(
platform::is_same_place(place, out_var_handle->place()),
"The place of input(%s) is not consistent with the "
"place of current op(%s).",
out_var_handle->Name(), Name());
out_var_handle->SetGenerateEvent(events_[dev_id]);
}
}
}
} }
#else #else
PADDLE_ENFORCE(!use_cuda); PADDLE_ENFORCE(!use_cuda);
#endif #endif
...@@ -93,17 +121,48 @@ void OpHandleBase::AddOutput(VarHandleBase *out) { ...@@ -93,17 +121,48 @@ void OpHandleBase::AddOutput(VarHandleBase *out) {
void OpHandleBase::WaitInputVarGenerated() { void OpHandleBase::WaitInputVarGenerated() {
for (auto in_var : inputs_) { for (auto in_var : inputs_) {
if (NeedWait(in_var)) { if (NeedWait(in_var)) {
for (auto &pair : dev_ctxes_) { // Dummy Variable is used to represent dependencies between operators, so
in_var->GeneratedOp()->RecordWaitEventOnCtx(pair.second); // there doesn't add event for it.
auto *in_var_handle = dynamic_cast<VarHandle *>(in_var);
if (in_var_handle) {
auto &place = in_var_handle->place();
if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
auto stream =
static_cast<platform::CUDADeviceContext *>(dev_ctxes_.at(place))
->stream();
PADDLE_ENFORCE(
cudaStreamWaitEvent(stream, in_var_handle->GetEvent(), 0));
#else
PADDLE_THROW("Doesn't compile the GPU.");
#endif
}
// There are nothing to do when the place is CPUPlace.
} }
} }
} }
} }
void OpHandleBase::WaitInputVarGenerated(const platform::Place &place) { void OpHandleBase::WaitInputVarGenerated(const platform::Place &place) {
for (auto *in : inputs_) { for (auto in_var : inputs_) {
if (NeedWait(in)) { if (NeedWait(in_var)) {
in->GeneratedOp()->RecordWaitEventOnCtx(dev_ctxes_.at(place)); // Dummy Variable is used to represent dependencies between operators, so
// there doesn't add event for it.
auto *in_var_handle = dynamic_cast<VarHandle *>(in_var);
if (in_var_handle) {
if (platform::is_gpu_place(in_var_handle->place())) {
#ifdef PADDLE_WITH_CUDA
auto stream = static_cast<platform::CUDADeviceContext *>(
dev_ctxes_.at(in_var_handle->place()))
->stream();
PADDLE_ENFORCE(
cudaStreamWaitEvent(stream, in_var_handle->GetEvent(), 0));
#else
PADDLE_THROW("Doesn't compile the GPU.");
#endif
}
// There are nothing to do when the place is CPUPlace.
}
} }
} }
} }
......
...@@ -53,6 +53,31 @@ struct ReduceLoDTensor { ...@@ -53,6 +53,31 @@ struct ReduceLoDTensor {
} }
}; };
struct ReduceBufferData {
const std::vector<const void *> &src_data_;
void *dst_data_;
int64_t numel_;
ReduceBufferData(const std::vector<const void *> &src, void *dst,
int64_t numel)
: src_data_(src), dst_data_(dst), numel_(numel) {}
template <typename T>
void apply() const {
T *dst_data = reinterpret_cast<T *>(dst_data_);
for (size_t i = 0; i < src_data_.size(); ++i) {
auto srd_data = reinterpret_cast<const T *>(src_data_[i]);
VLOG(10) << "dst: " << dst_data_ << ", " << srd_data;
if (srd_data == dst_data_) {
continue;
}
std::transform(srd_data, srd_data + numel_, dst_data, dst_data,
[](T a, T b) -> T { return a + b; });
}
}
};
inline void GatherLocalSelectedRows( inline void GatherLocalSelectedRows(
const std::vector<const SelectedRows *> &src_selecte_rows_, const std::vector<const SelectedRows *> &src_selecte_rows_,
const std::vector<platform::Place> &in_places, const std::vector<platform::Place> &in_places,
......
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
...@@ -27,62 +26,49 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor( ...@@ -27,62 +26,49 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
: graph_(graph), : graph_(graph),
pool_(strategy.num_threads_ >= 2 ? new ::ThreadPool(strategy.num_threads_) pool_(strategy.num_threads_ >= 2 ? new ::ThreadPool(strategy.num_threads_)
: nullptr), : nullptr),
prepare_pool_(1),
local_scopes_(local_scopes), local_scopes_(local_scopes),
places_(places), places_(places),
fetch_ctxs_(places), fetch_ctxs_(places),
running_ops_(0), strategy_(strategy) {
strategy_(strategy) {} PrepareOpDeps();
CopyOpDeps();
}
FeedFetchList ThreadedSSAGraphExecutor::Run( FeedFetchList ThreadedSSAGraphExecutor::Run(
const std::vector<std::string> &fetch_tensors) { const std::vector<std::string> &fetch_tensors) {
std::unique_ptr<platform::RecordEvent> event( std::unique_ptr<platform::RecordEvent> event(
new platform::RecordEvent("ThreadedSSAGraphExecutorPrepare")); new platform::RecordEvent("ThreadedSSAGraphExecutorPrepare"));
std::unordered_map<OpHandleBase *, size_t> pending_ops; std::unique_ptr<OpDependentData> op_deps = op_deps_futures_.get();
std::unordered_set<VarHandleBase *> pending_vars; CopyOpDeps();
auto ready_vars = std::make_shared<BlockingQueue<VarHandleBase *>>(); VLOG(10) << "ThreadedSSAGraphExecutor::Run";
std::unordered_set<OpHandleBase *> ready_ops; std::shared_ptr<BlockingQueue<VarHandleBase *>> ready_vars(
new BlockingQueue<VarHandleBase *>);
auto &pending_ops = op_deps->pending_ops_;
auto &pending_vars = op_deps->pending_vars_;
auto &ready_ops = op_deps->ready_ops_;
// For ops (e.g. nccl_all_reduce) that need to coordinate multiple // For ops (e.g. nccl_all_reduce) that need to coordinate multiple
// streams from multiple GPUs, it's faster to buffer them and schedule // streams from multiple GPUs, it's faster to buffer them and schedule
// together since we currently cannot overlap computation and memcpy streams. // together since we currently cannot overlap computation and memcpy streams.
// Should revisit it if overlapping is available. // Should revisit it if overlapping is available.
std::unordered_set<OpHandleBase *> delayed_ops; std::unordered_set<OpHandleBase *> delayed_ops;
// Transform SSAGraph to pending_ops & pending_vars
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
for (auto &name_pair : var_map) {
for (auto &version_pair : name_pair.second) {
InsertPendingVar(&pending_vars, ready_vars.get(), version_pair);
}
}
}
for (auto &var : graph_->Get<details::GraphDepVars>(details::kGraphDepVars)) {
InsertPendingVar(&pending_vars, ready_vars.get(), var);
}
for (auto &op : ir::FilterByNodeWrapper<OpHandleBase>(*graph_)) {
if (op->Inputs().empty()) { // Special case, Op has no input.
ready_ops.insert(op);
} else {
InsertPendingOp(&pending_ops, op);
}
}
// Step 2. Insert FetchOps // Step 2. Insert FetchOps
std::vector<FetchOpHandle *> fetch_ops; std::vector<FetchOpHandle *> fetch_ops;
std::unordered_set<VarHandleBase *> fetch_dependencies; std::unordered_set<VarHandleBase *> fetch_dependencies;
FeedFetchList fetch_data(fetch_tensors.size()); FeedFetchList fetch_data(fetch_tensors.size());
InsertFetchOps(fetch_tensors, &fetch_ops, &fetch_dependencies, &pending_ops, InsertFetchOps(fetch_tensors, &fetch_ops, &fetch_dependencies, &ready_ops,
&pending_vars, ready_vars.get(), &fetch_data); &pending_ops, &pending_vars, &fetch_data);
auto run_all_ops = [&](std::unordered_set<OpHandleBase *> &set) { auto run_all_ops = [&](std::unordered_set<OpHandleBase *> &set) {
for (auto *op : set) { for (auto *op : set) {
running_ops_++;
RunOp(ready_vars, op); RunOp(ready_vars, op);
} }
set.clear(); set.clear();
}; };
auto run_all_op = [&](OpHandleBase *op) { RunOp(ready_vars, op); };
// Clean run context // Clean run context
run_op_futures_.clear(); run_op_futures_.clear();
exception_holder_.Clear(); exception_holder_.Clear();
...@@ -91,19 +77,11 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -91,19 +77,11 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
while (!pending_vars.empty()) { while (!pending_vars.empty()) {
// 1. Run All Ready ops // 1. Run All Ready ops
// Keep loop until all vars are ready. // Keep loop until all vars are ready.
//
// NOTE: DelayedOps have a lower priority. It will be scheduled after all
// ready_ops have been performed.
if (ready_ops.empty() && strategy_.allow_op_delay_ && running_ops_ == 0) {
run_all_ops(delayed_ops);
} else {
run_all_ops(ready_ops); run_all_ops(ready_ops);
}
// 2. Find ready variable // 2. Find ready variable
bool timeout; bool timeout;
auto cur_ready_vars = ready_vars->PopAll(1, &timeout); auto cur_ready_vars = ready_vars->PopAll(1, &timeout);
if (timeout) { if (timeout) {
if (exception_holder_.IsCaught()) { if (exception_holder_.IsCaught()) {
for (auto &run_op_future : run_op_futures_) { for (auto &run_op_future : run_op_futures_) {
...@@ -115,6 +93,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -115,6 +93,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
continue; continue;
} }
} }
// 3. Remove the dependency of ready_var. // 3. Remove the dependency of ready_var.
// Find the ready_ops after the ready_var. // Find the ready_ops after the ready_var.
for (auto ready_var : cur_ready_vars) { for (auto ready_var : cur_ready_vars) {
...@@ -123,11 +102,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -123,11 +102,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto &deps = pending_ops[op]; auto &deps = pending_ops[op];
--deps; --deps;
if (deps == 0) { if (deps == 0) {
if (op->IsMultiDeviceTransfer() && strategy_.allow_op_delay_) { run_all_op(op);
delayed_ops.insert(op);
} else {
ready_ops.insert(op);
}
} }
} }
} }
...@@ -143,16 +118,17 @@ void ThreadedSSAGraphExecutor::InsertFetchOps( ...@@ -143,16 +118,17 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
const std::vector<std::string> &fetch_tensors, const std::vector<std::string> &fetch_tensors,
std::vector<FetchOpHandle *> *fetch_ops, std::vector<FetchOpHandle *> *fetch_ops,
std::unordered_set<VarHandleBase *> *fetch_dependencies, std::unordered_set<VarHandleBase *> *fetch_dependencies,
std::unordered_set<OpHandleBase *> *ready_ops,
std::unordered_map<OpHandleBase *, size_t> *pending_ops, std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_set<VarHandleBase *> *pending_vars, std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data) { FeedFetchList *fetch_data) {
std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars; std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars;
std::unordered_set<VarHandleBase *> local_ready_vars;
for (auto &fetch_var_name : fetch_tensors) { for (auto &fetch_var_name : fetch_tensors) {
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) { for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
auto it = var_map.find(fetch_var_name); auto it = var_map.find(fetch_var_name);
if (it != var_map.end()) { if (it != var_map.end()) {
fetched_vars[fetch_var_name].push_back(*it->second.rbegin()); fetched_vars[fetch_var_name].emplace_back(*it->second.rbegin());
} }
} }
} }
...@@ -161,8 +137,9 @@ void ThreadedSSAGraphExecutor::InsertFetchOps( ...@@ -161,8 +137,9 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
auto &var_name = fetch_tensors[i]; auto &var_name = fetch_tensors[i];
auto fetched_var_it = fetched_vars.find(var_name); auto fetched_var_it = fetched_vars.find(var_name);
PADDLE_ENFORCE(fetched_var_it != fetched_vars.end(), PADDLE_ENFORCE(fetched_var_it != fetched_vars.end(),
"Cannot find fetched variable.(Perhaps the main_program " "Cannot find fetched variable(%s).(Perhaps the main_program "
"is not set to ParallelExecutor)"); "is not set to ParallelExecutor)",
var_name);
auto &vars = fetched_var_it->second; auto &vars = fetched_var_it->second;
...@@ -184,9 +161,23 @@ void ThreadedSSAGraphExecutor::InsertFetchOps( ...@@ -184,9 +161,23 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
auto *fetch_dummy = new DummyVarHandle(fetch_var); auto *fetch_dummy = new DummyVarHandle(fetch_var);
op->AddOutput(fetch_dummy); op->AddOutput(fetch_dummy);
fetch_dependencies->emplace(fetch_dummy); fetch_dependencies->emplace(fetch_dummy);
this->InsertPendingVar(pending_vars, ready_vars, fetch_dummy);
this->InsertPendingOp(pending_ops, op); this->InsertPendingVar(pending_vars, &local_ready_vars, fetch_dummy);
size_t wait_input_num = 0;
std::unordered_set<VarHandleBase *> input_set(vars.begin(), vars.end());
for (auto *var : input_set) {
if (pending_vars->count(var)) {
++wait_input_num;
}
}
if (wait_input_num) {
pending_ops->insert({op, wait_input_num});
} else {
ready_ops->insert(static_cast<OpHandleBase *>(op));
}
} }
PADDLE_ENFORCE_EQ(local_ready_vars.size(), 0);
} }
void ThreadedSSAGraphExecutor::InsertPendingOp( void ThreadedSSAGraphExecutor::InsertPendingOp(
...@@ -197,13 +188,65 @@ void ThreadedSSAGraphExecutor::InsertPendingOp( ...@@ -197,13 +188,65 @@ void ThreadedSSAGraphExecutor::InsertPendingOp(
void ThreadedSSAGraphExecutor::InsertPendingVar( void ThreadedSSAGraphExecutor::InsertPendingVar(
std::unordered_set<VarHandleBase *> *pending_vars, std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, VarHandleBase *var) const { std::unordered_set<VarHandleBase *> *ready_vars, VarHandleBase *var) const {
pending_vars->insert(var); pending_vars->insert(var);
if (var->GeneratedOp() == nullptr) { if (var->GeneratedOp() == nullptr) {
ready_vars->Push(var); ready_vars->insert(var);
} }
} }
void ThreadedSSAGraphExecutor::PrepareOpDeps() {
op_deps_.reset(new OpDependentData());
std::unordered_map<OpHandleBase *, size_t> &pending_ops =
op_deps_->pending_ops_;
std::unordered_set<VarHandleBase *> &pending_vars = op_deps_->pending_vars_;
std::unordered_set<OpHandleBase *> &ready_ops = op_deps_->ready_ops_;
std::unordered_set<VarHandleBase *> ready_vars;
// Transform SSAGraph to pending_ops & pending_vars
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
for (auto &name_pair : var_map) {
for (auto &version_pair : name_pair.second) {
InsertPendingVar(&pending_vars, &ready_vars, version_pair);
}
}
}
for (auto &var : graph_->Get<details::GraphDepVars>(details::kGraphDepVars)) {
InsertPendingVar(&pending_vars, &ready_vars, var);
}
for (auto &op : ir::FilterByNodeWrapper<OpHandleBase>(*graph_)) {
if (op->Inputs().empty()) { // Special case, Op has no input.
ready_ops.insert(op);
} else {
InsertPendingOp(&pending_ops, op);
}
}
for (auto ready_var : ready_vars) {
pending_vars.erase(ready_var);
for (auto *op : ready_var->PendingOps()) {
auto &deps = pending_ops[op];
--deps;
if (deps == 0) {
ready_ops.insert(op);
}
}
}
}
void ThreadedSSAGraphExecutor::CopyOpDeps() {
op_deps_futures_ = prepare_pool_.enqueue([&] {
auto *op_deps = new OpDependentData();
op_deps->pending_ops_.insert(op_deps_->pending_ops_.begin(),
op_deps_->pending_ops_.end());
op_deps->pending_vars_.insert(op_deps_->pending_vars_.begin(),
op_deps_->pending_vars_.end());
op_deps->ready_ops_.insert(op_deps_->ready_ops_.begin(),
op_deps_->ready_ops_.end());
return std::unique_ptr<OpDependentData>(op_deps);
});
}
void ThreadedSSAGraphExecutor::RunOp( void ThreadedSSAGraphExecutor::RunOp(
const std::shared_ptr<BlockingQueue<VarHandleBase *>> &ready_var_q, const std::shared_ptr<BlockingQueue<VarHandleBase *>> &ready_var_q,
details::OpHandleBase *op) { details::OpHandleBase *op) {
...@@ -216,7 +259,6 @@ void ThreadedSSAGraphExecutor::RunOp( ...@@ -216,7 +259,6 @@ void ThreadedSSAGraphExecutor::RunOp(
op->Run(strategy_.use_cuda_); op->Run(strategy_.use_cuda_);
} }
VLOG(10) << op << " " << op->Name() << " Done "; VLOG(10) << op << " " << op->Name() << " Done ";
running_ops_--;
ready_var_q->Extend(op->Outputs()); ready_var_q->Extend(op->Outputs());
VLOG(10) << op << " " << op->Name() << " Signal posted"; VLOG(10) << op << " " << op->Name() << " Signal posted";
} catch (...) { } catch (...) {
......
...@@ -15,18 +15,20 @@ ...@@ -15,18 +15,20 @@
#pragma once #pragma once
#include <deque> #include <deque>
#include <functional>
#include <list> #include <list>
#include <memory>
#include <string> #include <string>
#include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party #include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h" #include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h" #include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h" #include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h" #include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h" #include "paddle/fluid/framework/details/ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
...@@ -36,6 +38,12 @@ class Scope; ...@@ -36,6 +38,12 @@ class Scope;
namespace details { namespace details {
struct OpDependentData {
std::unordered_map<OpHandleBase *, size_t> pending_ops_;
std::unordered_set<VarHandleBase *> pending_vars_;
std::unordered_set<OpHandleBase *> ready_ops_;
};
class ThreadedSSAGraphExecutor : public SSAGraphExecutor { class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
public: public:
ThreadedSSAGraphExecutor(const ExecutionStrategy &strategy, ThreadedSSAGraphExecutor(const ExecutionStrategy &strategy,
...@@ -57,29 +65,35 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -57,29 +65,35 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
private: private:
ir::Graph *graph_; ir::Graph *graph_;
std::unique_ptr<::ThreadPool> pool_; std::unique_ptr<::ThreadPool> pool_;
::ThreadPool prepare_pool_;
std::vector<Scope *> local_scopes_; std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_; std::vector<platform::Place> places_;
platform::DeviceContextPool fetch_ctxs_; platform::DeviceContextPool fetch_ctxs_;
ExceptionHolder exception_holder_; ExceptionHolder exception_holder_;
std::atomic<int> running_ops_;
void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops, void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops,
OpHandleBase *op_instance) const; OpHandleBase *op_instance) const;
void InsertPendingVar(std::unordered_set<VarHandleBase *> *pending_vars, void InsertPendingVar(std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, std::unordered_set<VarHandleBase *> *ready_vars,
VarHandleBase *var) const; VarHandleBase *var) const;
void InsertFetchOps(const std::vector<std::string> &fetch_tensors, void InsertFetchOps(const std::vector<std::string> &fetch_tensors,
std::vector<FetchOpHandle *> *fetch_ops, std::vector<FetchOpHandle *> *fetch_ops,
std::unordered_set<VarHandleBase *> *fetch_dependencies, std::unordered_set<VarHandleBase *> *fetch_dependencies,
std::unordered_set<OpHandleBase *> *ready_ops,
std::unordered_map<OpHandleBase *, size_t> *pending_ops, std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_set<VarHandleBase *> *pending_vars, std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars,
FeedFetchList *fetch_data); FeedFetchList *fetch_data);
void PrepareOpDeps();
void CopyOpDeps();
private: private:
std::future<std::unique_ptr<OpDependentData>> op_deps_futures_;
ExecutionStrategy strategy_; ExecutionStrategy strategy_;
std::unique_ptr<OpDependentData> op_deps_;
// use std::list because clear(), push_back, and for_each are O(1) // use std::list because clear(), push_back, and for_each are O(1)
std::list<std::future<void>> run_op_futures_; std::list<std::future<void>> run_op_futures_;
}; };
......
...@@ -43,6 +43,7 @@ struct VarHandleBase { ...@@ -43,6 +43,7 @@ struct VarHandleBase {
virtual ~VarHandleBase(); virtual ~VarHandleBase();
virtual std::string DebugString() const = 0; virtual std::string DebugString() const = 0;
virtual const std::string& Name() const = 0;
void AddInput(OpHandleBase* in, ir::Node* node) { void AddInput(OpHandleBase* in, ir::Node* node) {
node_->inputs.clear(); node_->inputs.clear();
...@@ -95,8 +96,6 @@ struct VarHandleBase { ...@@ -95,8 +96,6 @@ struct VarHandleBase {
// //
// NOTE: runtime variables have place. // NOTE: runtime variables have place.
struct VarHandle : public VarHandleBase { struct VarHandle : public VarHandleBase {
explicit VarHandle(ir::Node* node) : VarHandleBase(node) {}
virtual ~VarHandle(); virtual ~VarHandle();
std::string DebugString() const override; std::string DebugString() const override;
...@@ -109,6 +108,20 @@ struct VarHandle : public VarHandleBase { ...@@ -109,6 +108,20 @@ struct VarHandle : public VarHandleBase {
name_(std::move(name)), name_(std::move(name)),
place_(std::move(place)) {} place_(std::move(place)) {}
#ifdef PADDLE_WITH_CUDA
bool HasEvent() { return has_event_; }
const cudaEvent_t& GetEvent() {
PADDLE_ENFORCE(HasEvent(), "The event is not set.");
return event_;
}
void SetGenerateEvent(const cudaEvent_t& event) {
has_event_ = true;
event_ = event;
}
#endif
// version field currently is not used, however, just store the version to // version field currently is not used, however, just store the version to
// debug easily. // debug easily.
private: private:
...@@ -116,6 +129,11 @@ struct VarHandle : public VarHandleBase { ...@@ -116,6 +129,11 @@ struct VarHandle : public VarHandleBase {
size_t scope_idx_; size_t scope_idx_;
std::string name_; std::string name_;
platform::Place place_; platform::Place place_;
#ifdef PADDLE_WITH_CUDA
// Only when this event is triggered, var is generated.
cudaEvent_t event_;
bool has_event_{false};
#endif
public: public:
bool IsTheSameVar(const VarHandle& o) const { bool IsTheSameVar(const VarHandle& o) const {
...@@ -125,6 +143,7 @@ struct VarHandle : public VarHandleBase { ...@@ -125,6 +143,7 @@ struct VarHandle : public VarHandleBase {
size_t version() const { return version_; } size_t version() const { return version_; }
size_t scope_idx() const { return scope_idx_; } size_t scope_idx() const { return scope_idx_; }
const std::string& Name() const override { return name_; }
const std::string& name() const { return name_; } const std::string& name() const { return name_; }
const platform::Place& place() const { return place_; } const platform::Place& place() const { return place_; }
}; };
...@@ -136,6 +155,10 @@ struct DummyVarHandle : public VarHandleBase { ...@@ -136,6 +155,10 @@ struct DummyVarHandle : public VarHandleBase {
virtual ~DummyVarHandle(); virtual ~DummyVarHandle();
std::string DebugString() const override; std::string DebugString() const override;
public:
const std::string& Name() const override { return name_; }
std::string name_{"DummyVar"};
}; };
} // namespace details } // namespace details
......
...@@ -70,6 +70,7 @@ pass_library(conv_affine_channel_fuse_pass inference) ...@@ -70,6 +70,7 @@ pass_library(conv_affine_channel_fuse_pass inference)
pass_library(transpose_flatten_concat_fuse_pass inference) pass_library(transpose_flatten_concat_fuse_pass inference)
pass_library(identity_scale_op_clean_pass base) pass_library(identity_scale_op_clean_pass base)
pass_library(sync_batch_norm_pass base) pass_library(sync_batch_norm_pass base)
pass_library(runtime_context_cache_pass base)
# There may be many transpose-flatten structures in a model, and the output of # There may be many transpose-flatten structures in a model, and the output of
# these structures will be used as inputs to the concat Op. This pattern will # these structures will be used as inputs to the concat Op. This pattern will
......
...@@ -224,8 +224,8 @@ std::unique_ptr<ir::Graph> CPUQuantizePass::ApplyImpl( ...@@ -224,8 +224,8 @@ std::unique_ptr<ir::Graph> CPUQuantizePass::ApplyImpl(
PADDLE_ENFORCE(param_scope()); PADDLE_ENFORCE(param_scope());
QuantizeConv(graph.get(), false /* with_residual_data */);
QuantizeConv(graph.get(), true /* with_residual_data */); QuantizeConv(graph.get(), true /* with_residual_data */);
QuantizeConv(graph.get());
QuantizePool(graph.get()); QuantizePool(graph.get());
return graph; return graph;
......
...@@ -599,10 +599,19 @@ bool VarLinksToOp(Node *node, const std::string &op_type) { ...@@ -599,10 +599,19 @@ bool VarLinksToOp(Node *node, const std::string &op_type) {
bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) { bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
PADDLE_ENFORCE(var->IsVar()); PADDLE_ENFORCE(var->IsVar());
PADDLE_ENFORCE(op->IsOp()); PADDLE_ENFORCE(op->IsOp());
if (op->Op()->Input(argument).size() <= nth) return false; if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
return false;
return var->Name() == op->Op()->Input(argument)[nth]; return var->Name() == op->Op()->Input(argument)[nth];
} }
bool HasInput(Node *op, const std::string &argument) {
PADDLE_ENFORCE(op->IsOp());
auto const &names = op->Op()->InputNames();
if (std::find(names.begin(), names.end(), argument) == names.end())
return false;
return true;
}
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) { bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
PADDLE_ENFORCE(var->IsVar()); PADDLE_ENFORCE(var->IsVar());
PADDLE_ENFORCE(op->IsOp()); PADDLE_ENFORCE(op->IsOp());
...@@ -1082,8 +1091,15 @@ PDNode *patterns::Conv::operator()() { ...@@ -1082,8 +1091,15 @@ PDNode *patterns::Conv::operator()() {
PDNode *patterns::ConvResidual::operator()(bool with_residual_data) { PDNode *patterns::ConvResidual::operator()(bool with_residual_data) {
auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d"); auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
if (!with_residual_data) if (!with_residual_data) {
conv_op->assert_op_attr("fuse_residual_connection", false); conv_op->assert_more([&](Node *x) {
auto node_names = x->Op()->InputNames();
if (!HasInput(x, "ResidualData") ||
x->Op()->Input("ResidualData").size() == 0)
return true;
return false;
});
}
auto input_var = pattern->NewNode(conv_input_repr()) auto input_var = pattern->NewNode(conv_input_repr())
->AsInput() ->AsInput()
......
...@@ -305,6 +305,9 @@ bool VarLinksFromOp(Node* node, const std::string& op_type); ...@@ -305,6 +305,9 @@ bool VarLinksFromOp(Node* node, const std::string& op_type);
// Check whether a var node is a op node's nth input. // Check whether a var node is a op node's nth input.
bool IsNthInput(Node* var, Node* op, const std::string& argument, size_t nth); bool IsNthInput(Node* var, Node* op, const std::string& argument, size_t nth);
// Check whether the op node has input of given name.
bool HasInput(Node* op, const std::string& argument);
// Tell whether a var node is a op node's nth output. // Tell whether a var node is a op node's nth output.
bool IsNthOutput(Node* var, Node* op, const std::string& argument, size_t nth); bool IsNthOutput(Node* var, Node* op, const std::string& argument, size_t nth);
......
...@@ -14,12 +14,16 @@ limitations under the License. */ ...@@ -14,12 +14,16 @@ limitations under the License. */
#pragma once #pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/ir/pass.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
/*
* Specifies which operators should use MKLDNN.
*/
class MKLDNNPlacementPass : public Pass { class MKLDNNPlacementPass : public Pass {
protected: protected:
std::unique_ptr<ir::Graph> ApplyImpl( std::unique_ptr<ir::Graph> ApplyImpl(
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/runtime_context_cache_pass.h"
#include <memory>
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace framework {
namespace ir {
std::unique_ptr<ir::Graph> RuntimeContextCachePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
VLOG(3) << "Applies Runtime Context Cache strategy.";
for (const Node* n : graph->Nodes()) {
if (n->IsOp()) {
n->Op()->SetAttr(kEnableCacheRuntimeContext, true);
}
}
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(runtime_context_cache_pass,
paddle::framework::ir::RuntimeContextCachePass);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
class RuntimeContextCachePass : public Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace ir
} // namespace framework
} // namespace paddle
...@@ -876,7 +876,22 @@ std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig( ...@@ -876,7 +876,22 @@ std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
void OperatorWithKernel::RunImpl(const Scope& scope, void OperatorWithKernel::RunImpl(const Scope& scope,
const platform::Place& place) const { const platform::Place& place) const {
if (!HasAttr(kEnableCacheRuntimeContext)) {
RuntimeContext ctx(Inputs(), Outputs(), scope); RuntimeContext ctx(Inputs(), Outputs(), scope);
RunImpl(scope, place, &ctx);
} else {
const Scope* cur_scope = &scope;
if (!runtime_ctx_ || pre_scope_ != cur_scope) {
runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
pre_scope_ = cur_scope;
}
RunImpl(scope, place, runtime_ctx_.get());
}
}
void OperatorWithKernel::RunImpl(const Scope& scope,
const platform::Place& place,
RuntimeContext* runtime_ctx) const {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place); auto* dev_ctx = pool.Get(place);
...@@ -891,7 +906,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope, ...@@ -891,7 +906,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
OpKernelMap& kernels = kernels_iter->second; OpKernelMap& kernels = kernels_iter->second;
auto expected_kernel_key = this->GetExpectedKernelType( auto expected_kernel_key = this->GetExpectedKernelType(
ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr)); ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx, nullptr));
VLOG(3) << "expected_kernel_key:" << expected_kernel_key; VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key); auto kernel_iter = kernels.find(expected_kernel_key);
...@@ -915,8 +930,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope, ...@@ -915,8 +930,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
// do data transformScope &transfer_scope; // do data transformScope &transfer_scope;
std::vector<std::string> transfered_inplace_vars; std::vector<std::string> transfered_inplace_vars;
auto* transfer_scope = auto* transfer_scope = PrepareData(scope, expected_kernel_key,
PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx); &transfered_inplace_vars, runtime_ctx);
// exec scope is the scope that kernel actually executed on. // exec scope is the scope that kernel actually executed on.
const Scope& exec_scope = const Scope& exec_scope =
...@@ -927,13 +942,13 @@ void OperatorWithKernel::RunImpl(const Scope& scope, ...@@ -927,13 +942,13 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
} }
if (!HasAttr(kAllKernelsMustComputeRuntimeShape)) { if (!HasAttr(kAllKernelsMustComputeRuntimeShape)) {
RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx); RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
this->InferShape(&infer_shape_ctx); this->InferShape(&infer_shape_ctx);
} }
// TODO(panyx0718): ExecutionContext should only depend on RuntimeContext // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
// not Scope. Imperative mode only pass inputs and get outputs. // not Scope. Imperative mode only pass inputs and get outputs.
kernel_iter->second( kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx,
ExecutionContext(*this, exec_scope, *dev_ctx, ctx, kernel_configs)); *runtime_ctx, kernel_configs));
if (!transfered_inplace_vars.empty()) { if (!transfered_inplace_vars.empty()) {
// there is inplace variable has been transfered. // there is inplace variable has been transfered.
......
...@@ -62,6 +62,14 @@ constexpr char kZeroVarSuffix[] = "@ZERO"; ...@@ -62,6 +62,14 @@ constexpr char kZeroVarSuffix[] = "@ZERO";
/// Variables with this suffix are the new Gradient. /// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@"; constexpr char kNewGradSuffix[] = "@NEWGRAD@";
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";
/// If an Op has this attribute, all its kernels should calculate output /// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And /// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape() /// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
...@@ -456,6 +464,8 @@ class OperatorWithKernel : public OperatorBase { ...@@ -456,6 +464,8 @@ class OperatorWithKernel : public OperatorBase {
// same. // same.
proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const; proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
void RunImpl(const Scope& scope, const platform::Place& place) const final; void RunImpl(const Scope& scope, const platform::Place& place) const final;
void RunImpl(const Scope& scope, const platform::Place& place,
RuntimeContext* runtime_ctx) const;
/** /**
* Transfer data from scope to a transfered scope. If there is no data need to * Transfer data from scope to a transfered scope. If there is no data need to
...@@ -474,6 +484,8 @@ class OperatorWithKernel : public OperatorBase { ...@@ -474,6 +484,8 @@ class OperatorWithKernel : public OperatorBase {
protected: protected:
mutable OpKernelConfigsMap kernel_configs_map_; mutable OpKernelConfigsMap kernel_configs_map_;
mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
mutable const Scope* pre_scope_ = nullptr;
}; };
extern bool OpSupportGPU(const std::string& op_type); extern bool OpSupportGPU(const std::string& op_type);
......
...@@ -254,18 +254,29 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places, ...@@ -254,18 +254,29 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
member_->places_, nccl_id, build_strategy.num_trainers_, member_->places_, nccl_id, build_strategy.num_trainers_,
build_strategy.trainer_id_)); build_strategy.trainer_id_));
// Initialize device context's nccl comm, will be used by normal
// Operators like sync_batch_norm, and collective ops.
// NOTE: more than one ParallelExecutor with same place, the nccl comm will
// be rewrite and there will be some problem.
// NOTE: NCCL group-calls and non-group-calls can not use the same
// NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
// same communicators.
std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs; std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
if (nccl_id == nullptr) {
dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_)); dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
// Initialize device context's nccl comm }
// Note, more than one ParallelExecutor with same place, the nccl comm will
// be rewrite and there will be some problem.
for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) { for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
auto &nccl_ctx = dev_nccl_ctxs->at(dev_id);
platform::DeviceContextPool &pool = platform::DeviceContextPool &pool =
platform::DeviceContextPool::Instance(); platform::DeviceContextPool::Instance();
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>( auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
pool.Get(member_->places_[dev_id])); pool.Get(member_->places_[dev_id]));
if (nccl_id != nullptr) {
auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
dev_ctx->set_nccl_comm(nccl_ctx.comm()); dev_ctx->set_nccl_comm(nccl_ctx.comm());
} else {
auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
dev_ctx->set_nccl_comm(nccl_ctx.comm());
}
} }
#else #else
PADDLE_THROW("Not compiled with CUDA"); PADDLE_THROW("Not compiled with CUDA");
......
...@@ -34,7 +34,7 @@ DEFINE_double( ...@@ -34,7 +34,7 @@ DEFINE_double(
"Memory size threshold (GB) when the garbage collector clear tensors." "Memory size threshold (GB) when the garbage collector clear tensors."
"Disabled when this value is less than 0"); "Disabled when this value is less than 0");
DEFINE_bool(fast_eager_deletion_mode, false, DEFINE_bool(fast_eager_deletion_mode, true,
"Fast eager deletion mode. If enabled, memory would release " "Fast eager deletion mode. If enabled, memory would release "
"immediately without waiting GPU kernel ends."); "immediately without waiting GPU kernel ends.");
......
...@@ -131,6 +131,15 @@ struct Argument { ...@@ -131,6 +131,15 @@ struct Argument {
// Pass a set of op types to enable its mkldnn kernel // Pass a set of op types to enable its mkldnn kernel
DECL_ARGUMENT_FIELD(mkldnn_enabled_op_types, MKLDNNEnabledOpTypes, DECL_ARGUMENT_FIELD(mkldnn_enabled_op_types, MKLDNNEnabledOpTypes,
std::unordered_set<std::string>); std::unordered_set<std::string>);
// A set of op types to enable their quantized kernels
DECL_ARGUMENT_FIELD(quantize_enabled_op_types, QuantizeEnabledOpTypes,
std::unordered_set<std::string>);
// A set of op IDs to exclude from enabling their quantized kernels
DECL_ARGUMENT_FIELD(quantize_excluded_op_ids, QuantizeExcludedOpIds,
std::unordered_set<int>);
// Scales for variables to be quantized // Scales for variables to be quantized
DECL_ARGUMENT_FIELD(quant_var_scales, QuantVarScales, VarQuantScale); DECL_ARGUMENT_FIELD(quant_var_scales, QuantVarScales, VarQuantScale);
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/fluid/inference/analysis/ir_pass_manager.h" #include "paddle/fluid/inference/analysis/ir_pass_manager.h"
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <unordered_set>
#include <vector> #include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
...@@ -60,6 +61,13 @@ void IRPassManager::CreatePasses(Argument *argument, ...@@ -60,6 +61,13 @@ void IRPassManager::CreatePasses(Argument *argument,
pass->Set("mkldnn_enabled_op_types", pass->Set("mkldnn_enabled_op_types",
new std::unordered_set<std::string>( new std::unordered_set<std::string>(
argument->mkldnn_enabled_op_types())); argument->mkldnn_enabled_op_types()));
} else if (pass_name == "cpu_quantize_placement_pass") {
pass->Set("quantize_enabled_op_types",
new std::unordered_set<std::string>(
argument->quantize_enabled_op_types()));
pass->Set(
"quantize_excluded_op_ids",
new std::unordered_set<int>(argument->quantize_excluded_op_ids()));
} else if (pass_name == "cpu_quantize_pass") { } else if (pass_name == "cpu_quantize_pass") {
pass->Set("quant_var_scales", pass->Set("quant_var_scales",
new VarQuantScale(argument->quant_var_scales())); new VarQuantScale(argument->quant_var_scales()));
......
...@@ -202,6 +202,7 @@ void AnalysisConfig::Update() { ...@@ -202,6 +202,7 @@ void AnalysisConfig::Update() {
// Append after the Affine_channel_conv_fuse pass. // Append after the Affine_channel_conv_fuse pass.
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass"); pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
} }
pass_builder()->DeletePass("runtime_context_cache_pass");
} }
if (use_mkldnn_) { if (use_mkldnn_) {
......
...@@ -80,6 +80,7 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) { ...@@ -80,6 +80,7 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
"conv_elementwise_add_act_fuse_pass", // "conv_elementwise_add_act_fuse_pass", //
"conv_elementwise_add2_act_fuse_pass", // "conv_elementwise_add2_act_fuse_pass", //
"conv_elementwise_add_fuse_pass", // "conv_elementwise_add_fuse_pass", //
"runtime_context_cache_pass", //
#endif #endif
}); });
...@@ -90,6 +91,10 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) { ...@@ -90,6 +91,10 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
use_gpu_ = true; use_gpu_ = true;
} }
void GpuPassStrategy::EnableQuantizer() {
LOG(ERROR) << "GPU not support quantization yet";
}
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) { void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
analysis_passes_.push_back(pass); analysis_passes_.push_back(pass);
} }
...@@ -115,6 +120,7 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) { ...@@ -115,6 +120,7 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
"conv_eltwiseadd_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", //
"is_test_pass", // "is_test_pass", //
"identity_scale_op_clean_pass", // "identity_scale_op_clean_pass", //
"runtime_context_cache_pass", //
}); });
use_gpu_ = false; use_gpu_ = false;
} }
......
...@@ -84,6 +84,10 @@ class PassStrategy : public PaddlePassBuilder { ...@@ -84,6 +84,10 @@ class PassStrategy : public PaddlePassBuilder {
*/ */
virtual void EnableMKLDNN() {} virtual void EnableMKLDNN() {}
/** Enable quantize optimization
*/
virtual void EnableQuantizer() {}
bool use_gpu() const { return use_gpu_; } bool use_gpu() const { return use_gpu_; }
virtual ~PassStrategy() = default; virtual ~PassStrategy() = default;
...@@ -124,6 +128,16 @@ class CpuPassStrategy : public PassStrategy { ...@@ -124,6 +128,16 @@ class CpuPassStrategy : public PassStrategy {
use_mkldnn_ = false; use_mkldnn_ = false;
#endif #endif
} }
void EnableQuantizer() override {
if (!use_quantizer_) {
passes_.push_back("cpu_quantize_placement_pass");
}
use_quantizer_ = true;
}
protected:
bool use_quantizer_{false};
}; };
/** The GPU passes strategy, it is used in AnalysisPredictor with GPU mode. /** The GPU passes strategy, it is used in AnalysisPredictor with GPU mode.
...@@ -138,6 +152,7 @@ class GpuPassStrategy : public PassStrategy { ...@@ -138,6 +152,7 @@ class GpuPassStrategy : public PassStrategy {
} }
void EnableMKLDNN() override; void EnableMKLDNN() override;
void EnableQuantizer() override;
virtual ~GpuPassStrategy() = default; virtual ~GpuPassStrategy() = default;
}; };
......
cc_library(benchmark SRCS benchmark.cc DEPS enforce) cc_library(benchmark SRCS benchmark.cc DEPS enforce)
cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark) cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark)
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/utils/visualizer.h"
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <fstream>
#include <memory>
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/passes/ir_analysis_pass.h"
#include "paddle/fluid/platform/init.h"
DEFINE_string(model_dir, "", "model directory");
DEFINE_string(model_program_path, "", "model program path");
DEFINE_string(model_params_path, "", "model params path");
using paddle::inference::analysis::Argument;
namespace paddle {
namespace inference {
namespace utils {
void Visualizer::SetArgument(Argument *argument) { argument_ = argument; }
bool Visualizer::Run() {
paddle::framework::InitDevices(false);
paddle::inference::analysis::Analyzer().Run(argument_);
return true;
}
} // namespace utils
} // namespace inference
} // namespace paddle
// Generate a dot file describing the structure of graph.
// To use this tool, run command: ./visualizer [options...]
// Options:
// --model_dir: the directory of model
// --model_program_path: the path of program
// --model_params_path: the path of params
int main(int argc, char *argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
paddle::inference::analysis::Argument argument;
argument.SetUseGPU(false);
argument.SetUseTensorRT(false);
if (FLAGS_model_dir.empty()) {
if (FLAGS_model_program_path.empty() || FLAGS_model_params_path.empty()) {
LOG(ERROR) << "Please set model_dir"
" or model_program_path and model_params_path";
return -1;
} else {
argument.SetModelProgramPath(FLAGS_model_program_path);
argument.SetModelParamsPath(FLAGS_model_params_path);
}
} else {
argument.SetModelDir(FLAGS_model_dir);
}
// Only 1 pass, default filename is 0_ir_origin.dot
// For more details, looking for paddle::inference::analysis::IRPassManager
argument.SetIrAnalysisPasses({"infer_clean_graph_pass", "graph_viz_pass"});
std::unique_ptr<paddle::framework::Scope> scope{
new paddle::framework::Scope()};
argument.SetScopeNotOwned(
const_cast<paddle::framework::Scope *>(scope.get()));
paddle::inference::utils::Visualizer visualizer;
visualizer.SetArgument(&argument);
visualizer.Run();
return 0;
}
USE_PASS(infer_clean_graph_pass);
USE_PASS(graph_viz_pass);
USE_PASS(graph_to_program_pass);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/argument.h"
namespace paddle {
namespace inference {
namespace utils {
using paddle::inference::analysis::Argument;
class Visualizer final {
public:
Visualizer() = default;
~Visualizer() = default;
Visualizer(const Visualizer &) = delete;
Visualizer &operator=(const Visualizer &) = delete;
void SetArgument(Argument *);
bool Run();
private:
Argument *argument_;
};
} // namespace utils
} // namespace inference
} // namespace paddle
...@@ -76,12 +76,16 @@ framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx, ...@@ -76,12 +76,16 @@ framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
const std::string& name) { const std::string& name) {
framework::LibraryType library{framework::LibraryType::kPlain}; framework::LibraryType library{framework::LibraryType::kPlain};
framework::DataLayout layout = framework::DataLayout::kAnyLayout; framework::DataLayout layout = framework::DataLayout::kAnyLayout;
#ifdef PADDLE_WITH_CUDA // FIXME(liuwei1031) temporarily disable the code to unblock users
auto it1 = oper.Attrs().find("use_cudnn"); // TODO(liuwei1031) figure out the reason behind
if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) { // https://github.com/PaddlePaddle/Paddle/issues/16096
library = framework::LibraryType::kCUDNN; // and re-enable this in the future
} // #ifdef PADDLE_WITH_CUDA
#endif // auto it1 = oper.Attrs().find("use_cudnn");
// if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
// library = framework::LibraryType::kCUDNN;
// }
// #endif
#ifdef PADDLE_WITH_MKLDNN #ifdef PADDLE_WITH_MKLDNN
auto it = oper.Attrs().find("use_mkldnn"); auto it = oper.Attrs().find("use_mkldnn");
if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() && if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
...@@ -188,6 +192,9 @@ $$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ ...@@ -188,6 +192,9 @@ $$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
UNUSED constexpr char SqrtDoc[] = R"DOC( UNUSED constexpr char SqrtDoc[] = R"DOC(
Sqrt Activation Operator. Sqrt Activation Operator.
Please make sure legal input, when input a negative value closed to zero,
you should add a small epsilon(1e-12) to avoid negative number caused by numerical errors.
$out = \sqrt{x}$ $out = \sqrt{x}$
)DOC"; )DOC";
......
...@@ -67,6 +67,22 @@ class AffineChannelOp : public framework::OperatorWithKernel { ...@@ -67,6 +67,22 @@ class AffineChannelOp : public framework::OperatorWithKernel {
"Input(Bias) of AffineChannelOp should not be null."); "Input(Bias) of AffineChannelOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of AffineChannelOp should not be null."); "Output(Out) of AffineChannelOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto scale_dims = ctx->GetInputDim("Scale");
auto b_dims = ctx->GetInputDim("Bias");
const framework::DataLayout data_layout = framework::StringToDataLayout(
ctx->Attrs().Get<std::string>("data_layout"));
const int64_t C = (data_layout == framework::DataLayout::kNCHW
? x_dims[1]
: x_dims[x_dims.size() - 1]);
PADDLE_ENFORCE_EQ(scale_dims.size(), 1UL);
PADDLE_ENFORCE_EQ(scale_dims[0], C);
PADDLE_ENFORCE_EQ(b_dims.size(), 1UL);
PADDLE_ENFORCE_EQ(b_dims[0], C);
ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareLoD("X", "Out"); ctx->ShareLoD("X", "Out");
} }
...@@ -97,6 +113,27 @@ class AffineChannelOpGrad : public framework::OperatorWithKernel { ...@@ -97,6 +113,27 @@ class AffineChannelOpGrad : public framework::OperatorWithKernel {
} }
}; };
class AffineChannelGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* op = new framework::OpDesc();
op->SetType("affine_channel_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetInput("Scale", Input("Scale"));
op->SetAttrMap(Attrs());
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
return std::unique_ptr<framework::OpDesc>(op);
}
};
template <typename T> template <typename T>
using EigenArrayMap = using EigenArrayMap =
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>; Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
...@@ -244,8 +281,7 @@ namespace ops = paddle::operators; ...@@ -244,8 +281,7 @@ namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext; using CPU = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(affine_channel, ops::AffineChannelOp, REGISTER_OPERATOR(affine_channel, ops::AffineChannelOp,
ops::AffineChannelOpMaker, ops::AffineChannelOpMaker, ops::AffineChannelGradMaker);
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(affine_channel_grad, ops::AffineChannelOpGrad); REGISTER_OPERATOR(affine_channel_grad, ops::AffineChannelOpGrad);
REGISTER_OP_CPU_KERNEL(affine_channel, ops::AffineChannelKernel<CPU, float>, REGISTER_OP_CPU_KERNEL(affine_channel, ops::AffineChannelKernel<CPU, float>,
......
...@@ -57,7 +57,7 @@ class ConcatOp : public framework::OperatorWithKernel { ...@@ -57,7 +57,7 @@ class ConcatOp : public framework::OperatorWithKernel {
"elements except the specify axis."); "elements except the specify axis.");
} else { } else {
// not check -1 with other in compile time // not check -1 with other in compile time
if (out_dims[j] != -1 && ins[i][j] != -1) { if (out_dims[j] > 0 && ins[i][j] > 0) {
PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j],
"Input tensors should have the same " "Input tensors should have the same "
"elements except the specify axis."); "elements except the specify axis.");
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/conv_transpose_op.h" #include "paddle/fluid/operators/conv_transpose_op.h"
#include <memory>
#include <string> #include <string>
#include <vector> #include <vector>
...@@ -344,6 +345,28 @@ framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType( ...@@ -344,6 +345,28 @@ framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
ctx.GetPlace(), layout_, library_); ctx.GetPlace(), layout_, library_);
} }
class ConvTransposeGradOpDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType(ForwardOp().Type() + "_grad");
op->SetInput("Input", Input("Input"));
op->SetInput("Filter", Input("Filter"));
op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
if (ForwardOp().Inputs().count("Bias") > 0) {
op->SetInput("Bias", Input("Bias"));
op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
}
op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -352,7 +375,7 @@ namespace ops = paddle::operators; ...@@ -352,7 +375,7 @@ namespace ops = paddle::operators;
// conv2d_transpose // conv2d_transpose
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp, REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
ops::Conv2DTransposeOpMaker, ops::Conv2DTransposeOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::ConvTransposeGradOpDescMaker);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
...@@ -368,7 +391,7 @@ REGISTER_OP_CPU_KERNEL( ...@@ -368,7 +391,7 @@ REGISTER_OP_CPU_KERNEL(
// conv3d_transpose // conv3d_transpose
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp, REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
ops::Conv3DTransposeOpMaker, ops::Conv3DTransposeOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::ConvTransposeGradOpDescMaker);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
...@@ -384,7 +407,7 @@ REGISTER_OP_CPU_KERNEL( ...@@ -384,7 +407,7 @@ REGISTER_OP_CPU_KERNEL(
// depthwise conv2d_transpose // depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp, REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
ops::Conv2DTransposeOpMaker, ops::Conv2DTransposeOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::ConvTransposeGradOpDescMaker);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
......
...@@ -74,6 +74,9 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -74,6 +74,9 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
"Norm of the second input, reduced along the 1st " "Norm of the second input, reduced along the 1st "
"dimension.") "dimension.")
.AsIntermediate(); .AsIntermediate();
AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
"Skip calling InferShape() function in the runtime.")
.SetDefault(true);
AddComment(R"DOC( AddComment(R"DOC(
**Cosine Similarity Operator** **Cosine Similarity Operator**
......
...@@ -28,17 +28,21 @@ class CosSimKernel : public framework::OpKernel<T> { ...@@ -28,17 +28,21 @@ class CosSimKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
// get Tensor // get Tensor
auto* in_x = context.Input<Tensor>("X"); auto* in_x = context.Input<framework::LoDTensor>("X");
auto* in_y = context.Input<Tensor>("Y"); auto* in_y = context.Input<Tensor>("Y");
auto* out_z = context.Output<Tensor>("Out"); auto* out_z = context.Output<framework::LoDTensor>("Out");
auto* out_x_norm = context.Output<Tensor>("XNorm"); auto* out_x_norm = context.Output<Tensor>("XNorm");
auto* out_y_norm = context.Output<Tensor>("YNorm"); auto* out_y_norm = context.Output<Tensor>("YNorm");
out_z->mutable_data<T>(context.GetPlace());
out_x_norm->mutable_data<T>(context.GetPlace());
out_y_norm->mutable_data<T>(context.GetPlace());
int rows_x = in_x->dims()[0]; int rows_x = in_x->dims()[0];
int rows_y = in_y->dims()[0]; int rows_y = in_y->dims()[0];
out_z->Resize({rows_x, 1});
out_x_norm->Resize({rows_x, 1});
out_y_norm->Resize({rows_y, 1});
out_z->mutable_data<T>(context.GetPlace());
out_x_norm->mutable_data<T>(context.GetPlace());
out_y_norm->mutable_data<T>(context.GetPlace());
out_z->set_lod(in_x->lod());
int cols = framework::product(in_x->dims()) / rows_x; int cols = framework::product(in_x->dims()) / rows_x;
...@@ -81,6 +85,7 @@ class CosSimGradKernel : public framework::OpKernel<T> { ...@@ -81,6 +85,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
if (rows_x == rows_y) { if (rows_x == rows_y) {
if (out_grad_x) { if (out_grad_x) {
out_grad_x->Resize(in_x->dims());
math::CosSimGradFunctor<T> functor( math::CosSimGradFunctor<T> functor(
in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(), in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(), in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
...@@ -91,6 +96,7 @@ class CosSimGradKernel : public framework::OpKernel<T> { ...@@ -91,6 +96,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
for_range(functor); for_range(functor);
} }
if (out_grad_y) { if (out_grad_y) {
out_grad_y->Resize(in_y->dims());
math::CosSimGradFunctor<T> functor( math::CosSimGradFunctor<T> functor(
in_y_norm->data<T>(), in_x_norm->data<T>(), in_y->data<T>(), in_y_norm->data<T>(), in_x_norm->data<T>(), in_y->data<T>(),
in_x->data<T>(), in_z->data<T>(), in_grad_z->data<T>(), in_x->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
...@@ -102,6 +108,7 @@ class CosSimGradKernel : public framework::OpKernel<T> { ...@@ -102,6 +108,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
} }
} else { } else {
if (out_grad_x) { if (out_grad_x) {
out_grad_x->Resize(in_x->dims());
math::CosSimDxFunctor<T> functor( math::CosSimDxFunctor<T> functor(
in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(), in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(), in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
...@@ -112,6 +119,7 @@ class CosSimGradKernel : public framework::OpKernel<T> { ...@@ -112,6 +119,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
for_range(functor); for_range(functor);
} }
if (out_grad_y) { if (out_grad_y) {
out_grad_y->Resize(in_y->dims());
out_grad_y->mutable_data<T>(context.GetPlace()); out_grad_y->mutable_data<T>(context.GetPlace());
math::SetConstant<DeviceContext, T> set_zero; math::SetConstant<DeviceContext, T> set_zero;
auto& dev_ctx = context.template device_context<DeviceContext>(); auto& dev_ctx = context.template device_context<DeviceContext>();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <future> // NOLINT
#include <ostream>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace operators {
struct MutableDataFunctor {
MutableDataFunctor(void** data, framework::LoDTensor* tensor,
const platform::Place& place)
: data_(data), tensor_(tensor), place_(place) {}
template <typename T>
void apply() {
*data_ = tensor_->mutable_data<T>(place_);
}
void** data_;
framework::LoDTensor* tensor_;
platform::Place place_;
};
class AllReduceOp : public framework::OperatorBase {
using OperatorBase::OperatorBase;
void RunImpl(const framework::Scope& scope,
const platform::Place& place) const override {
PADDLE_ENFORCE(is_gpu_place(place),
"AllReduce op can run on gpu place only for now.");
#ifdef PADDLE_WITH_CUDA
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* ctx = pool.Get(place);
auto in_names = Inputs("X");
auto out_names = Outputs("Out");
PADDLE_ENFORCE_EQ(in_names.size(), 1, "Only support one input");
PADDLE_ENFORCE_EQ(out_names.size(), 1, "Only support one output");
auto* in = scope.FindVar(in_names[0]);
auto* out = scope.FindVar(out_names[0]);
PADDLE_ENFORCE(in->IsType<framework::LoDTensor>() ||
out->IsType<framework::LoDTensor>(),
"Only support allreduce LoDTensors");
int dtype = -1;
auto in_tensor = in->Get<framework::LoDTensor>();
dtype = platform::ToNCCLDataType(in_tensor.type());
int64_t numel = in_tensor.numel();
auto* sendbuff = in_tensor.data<void>();
auto* out_tensor = out->GetMutable<framework::LoDTensor>();
out_tensor->Resize(in_tensor.dims());
void* recvbuff = nullptr;
framework::VisitDataType(in_tensor.type(),
MutableDataFunctor(&recvbuff, out_tensor, place));
auto cuda_ctx = static_cast<platform::CUDADeviceContext*>(ctx);
auto* comm = cuda_ctx->nccl_comm();
// FIXME(typhoonzero): should use nccl stream here.
auto stream = cuda_ctx->stream();
int reduce_type = Attr<int>("reduce_type");
ncclRedOp_t red_type = ncclSum;
switch (reduce_type) {
case 0:
red_type = ncclSum;
break;
case 1:
red_type = ncclProd;
break;
case 2:
red_type = ncclMax;
break;
case 3:
red_type = ncclMin;
break;
}
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
sendbuff, recvbuff, numel, static_cast<ncclDataType_t>(dtype), red_type,
comm, stream));
#endif
}
};
class AllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "(Tensor), tensor to be allreduced.");
AddOutput("Out", "(Tensor) the result of allreduced.");
AddAttr<int>("reduce_type", "(int) determin the reduce type.")
.SetDefault(0);
AddComment(R"DOC(
***AllReduce Operator***
Call NCCL AllReduce internally. Note that this op must be used when one
thread is managing one GPU device.
For speed reasons, reduce_type should be an integer:
0: sum
1: prod
2: max
3: min
If input and output are the same variable, in-place allreduce will be used.
)DOC");
}
};
class AllReduceOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(allreduce, ops::AllReduceOp,
paddle::framework::EmptyGradOpMaker, ops::AllReduceOpMaker,
ops::AllReduceOpShapeInference);
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h" #include "paddle/fluid/operators/dropout_op.h"
#include <memory>
#include <string> #include <string>
namespace paddle { namespace paddle {
...@@ -70,7 +71,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -70,7 +71,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
"1. downgrade_in_infer(default), downgrade the outcome at inference " "1. downgrade_in_infer(default), downgrade the outcome at inference "
"time" "time"
" train: out = input * mask" " train: out = input * mask"
" inference: out = input * dropout_prob" " inference: out = input * (1.0 - dropout_prob)"
"2. upscale_in_train, upscale the outcome at training time, do nothing " "2. upscale_in_train, upscale the outcome at training time, do nothing "
"in inference" "in inference"
" train: out = input * mask / ( 1.0 - dropout_prob )" " train: out = input * mask / ( 1.0 - dropout_prob )"
...@@ -106,21 +107,31 @@ class DropoutOpGrad : public framework::OperatorWithKernel { ...@@ -106,21 +107,31 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false, PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
"GradOp is only callable when is_test is false"); "GradOp is only callable when is_test is false");
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null."); PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) must not be null."); "Input(Out@GRAD) must not be null.");
auto x_dims = ctx->GetInputDim("X");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ(x_dims, out_dims,
"Dimensions of Input(X) and Out@Grad must be the same."); ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
auto mask_dims = ctx->GetInputDim("Mask"); ctx->ShareLoD(framework::GradVarName("Out"),
PADDLE_ENFORCE_EQ(x_dims, mask_dims, /*->*/ framework::GradVarName("X"));
"Dimensions of Input(X) and Mask must be the same."); }
};
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X")); class DropoutGradOpDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("dropout_grad");
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetInput("Mask", Output("Mask"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
} }
}; };
...@@ -129,7 +140,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel { ...@@ -129,7 +140,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker, REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::DropoutGradOpDescMaker);
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad); REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>, dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>,
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_floordiv_op.h"
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseFloorDivOpMaker : public ElementwiseOpMaker {
protected:
std::string GetName() const override { return "FloorDiv"; }
std::string GetEquation() const override { return "Out = X // Y"; }
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(elementwise_floordiv, ops::ElementwiseOp,
ops::ElementwiseFloorDivOpMaker);
REGISTER_OP_CPU_KERNEL(
elementwise_floordiv,
ops::ElementwiseFloorDivKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseFloorDivKernel<paddle::platform::CPUDeviceContext,
int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_floordiv_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
elementwise_floordiv,
ops::ElementwiseFloorDivKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseFloorDivKernel<plat::CUDADeviceContext, int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
namespace paddle {
namespace operators {
template <typename T>
struct FloorDivFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a / b; }
};
template <typename DeviceContext, typename T>
void elementwise_floor_div(const framework::ExecutionContext &ctx,
const framework::Tensor *x,
const framework::Tensor *y, framework::Tensor *z) {
int axis = ctx.Attr<int>("axis");
ElementwiseComputeEx<FloorDivFunctor<T>, DeviceContext, T>(
ctx, x, y, axis, FloorDivFunctor<T>(), z);
}
template <typename DeviceContext, typename T>
class ElementwiseFloorDivKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<framework::LoDTensor>("X");
auto *y = ctx.Input<framework::LoDTensor>("Y");
auto *z = ctx.Output<framework::LoDTensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
// dtype of x and y is int64 or int32
elementwise_floor_div<DeviceContext, T>(ctx, x, y, z);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseModOpMaker : public ElementwiseOpMaker {
protected:
std::string GetName() const override { return "Mod"; }
std::string GetEquation() const override { return "Out = X % Y"; }
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(elementwise_mod, ops::ElementwiseOp,
ops::ElementwiseModOpMaker);
REGISTER_OP_CPU_KERNEL(
elementwise_mod,
ops::ElementwiseModKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseModKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
elementwise_mod, ops::ElementwiseModKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseModKernel<plat::CUDADeviceContext, int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
namespace paddle {
namespace operators {
template <typename T>
struct ModFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a % b; }
};
template <typename DeviceContext, typename T>
void elementwise_mod(const framework::ExecutionContext &ctx,
const framework::Tensor *x, const framework::Tensor *y,
framework::Tensor *z) {
int axis = ctx.Attr<int>("axis");
ElementwiseComputeEx<ModFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
ModFunctor<T>(), z);
}
template <typename DeviceContext, typename T>
class ElementwiseModKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<framework::LoDTensor>("X");
auto *y = ctx.Input<framework::LoDTensor>("Y");
auto *z = ctx.Output<framework::LoDTensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
// dtype of x and y is int64 or int32
elementwise_mod<DeviceContext, T>(ctx, x, y, z);
}
};
} // namespace operators
} // namespace paddle
...@@ -33,8 +33,51 @@ struct DequantizeFunctor<platform::CPUDeviceContext, T> { ...@@ -33,8 +33,51 @@ struct DequantizeFunctor<platform::CPUDeviceContext, T> {
} }
}; };
template <typename T>
struct ChannelDequantizeFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor** scales,
const int scale_num, T max_range, framework::Tensor* out) {
if (scale_num == 1) {
const int channel = in->dims()[0];
const T* scale_factor = scales[0]->data<T>();
for (int i = 0; i < channel; i++) {
T s = scale_factor[i];
framework::Tensor one_channel_in = in->Slice(i, i + 1);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
auto& dev = *dev_ctx.eigen_device();
out_e.device(dev) = (s / max_range) * in_e;
}
} else if (scale_num == 2) {
int batch_size = in->dims()[0];
int channel = in->dims()[1];
const T* scale_one = scales[0]->data<T>();
const T* scale_two = scales[1]->data<T>();
for (int i = 0; i < batch_size; i++) {
framework::Tensor one_batch_in = in->Slice(i, i + 1).Resize(
framework::slice_ddim(in->dims(), 1, in->dims().size()));
framework::Tensor one_batch_out = out->Slice(i, i + 1).Resize(
framework::slice_ddim(out->dims(), 1, out->dims().size()));
for (int j = 0; j < channel; j++) {
T s = scale_one[j];
framework::Tensor one_channel_in = one_batch_in.Slice(j, j + 1);
framework::Tensor one_channel_out = one_batch_out.Slice(j, j + 1);
auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
auto& dev = *dev_ctx.eigen_device();
out_e.device(dev) = (s * scale_two[0] / max_range) * in_e;
}
}
}
}
};
template struct DequantizeFunctor<platform::CPUDeviceContext, float>; template struct DequantizeFunctor<platform::CPUDeviceContext, float>;
template struct DequantizeFunctor<platform::CPUDeviceContext, double>; template struct DequantizeFunctor<platform::CPUDeviceContext, double>;
template struct ChannelDequantizeFunctor<platform::CPUDeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CPUDeviceContext, double>;
class FakeDequantizeMaxAbsOp : public framework::OperatorWithKernel { class FakeDequantizeMaxAbsOp : public framework::OperatorWithKernel {
public: public:
......
...@@ -44,8 +44,66 @@ struct DequantizeFunctor<platform::CUDADeviceContext, T> { ...@@ -44,8 +44,66 @@ struct DequantizeFunctor<platform::CUDADeviceContext, T> {
} }
}; };
template <typename T>
__global__ void DequantizeOneScale(const T* in, const T* scale, T max_range,
int num, int channel, T* out) {
int tid = threadIdx.x;
int channel_size = num / channel;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
for (int i = tid; i < channel_size; i += blockDim.x) {
out_c[i] = in_c[i] * scale[blockIdx.x] / max_range;
}
}
template <typename T>
__global__ void DequantizeTwoScale(const T* in, const T* scale_one,
const T* scale_two, T max_range, int num,
int batch_size, int channel, T* out) {
int tid = threadIdx.x;
int channel_size = num / (batch_size * channel);
int scale_index = blockIdx.x % channel;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
for (int i = tid; i < channel_size; i += blockDim.x) {
out_c[i] = in_c[i] * scale_one[scale_index] * scale_two[0] / max_range;
}
}
template <typename T>
struct ChannelDequantizeFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor** scales,
const int scale_num, T max_range, framework::Tensor* out) {
const T* in_data = in->data<T>();
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
if (scale_num == 1) {
int num = in->numel();
int channel = in->dims()[0];
const T* scale_factor = scales[0]->data<T>();
int block = 1024;
int grid = channel;
DequantizeOneScale<T><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, scale_factor, max_range, num, channel, out_data);
} else if (scale_num == 2) {
int num = in->numel();
int batch_size = in->dims()[0];
int channel = in->dims()[1];
const T* scale_one = scales[0]->data<T>();
const T* scale_two = scales[1]->data<T>();
int block = 1024;
int grid = batch_size * channel;
DequantizeTwoScale<T><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, scale_one, scale_two, max_range, num, batch_size, channel,
out_data);
}
}
};
template struct DequantizeFunctor<platform::CUDADeviceContext, float>; template struct DequantizeFunctor<platform::CUDADeviceContext, float>;
template struct DequantizeFunctor<platform::CUDADeviceContext, double>; template struct DequantizeFunctor<platform::CUDADeviceContext, double>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, double>;
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include <vector> #include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
...@@ -28,6 +29,13 @@ struct DequantizeFunctor { ...@@ -28,6 +29,13 @@ struct DequantizeFunctor {
framework::Tensor* out); framework::Tensor* out);
}; };
template <typename DeviceContext, typename T>
struct ChannelDequantizeFunctor {
void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in,
const framework::Tensor** scales, const int scale_num,
T max_range, framework::Tensor* out);
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class FakeDequantizeMaxAbsKernel : public framework::OpKernel<T> { class FakeDequantizeMaxAbsKernel : public framework::OpKernel<T> {
public: public:
...@@ -54,32 +62,33 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> { ...@@ -54,32 +62,33 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
auto scales = ctx.MultiInput<framework::Tensor>("Scales"); auto scales = ctx.MultiInput<framework::Tensor>("Scales");
auto* out = ctx.Output<framework::Tensor>("Out"); auto* out = ctx.Output<framework::Tensor>("Out");
PADDLE_ENFORCE_EQ(scales[0]->numel(), in->dims()[0],
"The number of first scale values must be the same with "
"first dimension value of Input(X).");
auto quant_bits = ctx.Attr<std::vector<int>>("quant_bits"); auto quant_bits = ctx.Attr<std::vector<int>>("quant_bits");
int max_range = std::pow(2, quant_bits[0] - 1) - 1; int max_range = 1;
auto& dev_ctx = ctx.template device_context<DeviceContext>(); auto& dev_ctx = ctx.template device_context<DeviceContext>();
out->mutable_data<T>(dev_ctx.GetPlace()); out->mutable_data<T>(dev_ctx.GetPlace());
int scale_num = scales.size();
auto dequant = DequantizeFunctor<DeviceContext, T>(); if (scale_num == 1) {
for (int64_t i = 0; i < in->dims()[0]; i++) { PADDLE_ENFORCE_EQ(
framework::Tensor one_channel_in = in->Slice(i, i + 1); scales[0]->numel(), in->dims()[0],
framework::Tensor one_channel_out = out->Slice(i, i + 1); "The number of first scale values must be the same with "
framework::Tensor one_channel_scale = scales[0]->Slice(i, i + 1); "first dimension value of Input(X) when the `Scales` has only one "
dequant(dev_ctx, &one_channel_in, &one_channel_scale, "element.");
static_cast<T>(max_range), &one_channel_out); max_range *= (std::pow(2, quant_bits[0] - 1) - 1);
} } else if (scale_num == 2) {
PADDLE_ENFORCE_EQ(
if (scales.size() == 2) { scales[0]->numel(), in->dims()[1],
"The number of first scale values must be the same with "
"second dimension value of Input(X) when the `Scales` has two "
"elements.");
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
scales[1]->numel(), 1, scales[1]->numel(), 1,
"The second scale tensor should only have one value at now."); "The second scale tensor should only have one value at now.");
max_range = std::pow(2, quant_bits[1] - 1) - 1; max_range *= (std::pow(2, quant_bits[0] - 1) - 1) *
dequant(dev_ctx, out, scales[1], static_cast<T>(max_range), out); (std::pow(2, quant_bits[1] - 1) - 1);
} }
ChannelDequantizeFunctor<DeviceContext, T>()(
dev_ctx, in, scales.data(), scale_num, static_cast<T>(max_range), out);
} }
}; };
......
...@@ -37,6 +37,21 @@ struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> { ...@@ -37,6 +37,21 @@ struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>; template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx, const T* in,
const int num, const int channel, T* out) {
const int channel_size = num / channel;
for (int i = 0; i < channel; i++) {
auto* start = in + i * channel_size;
auto* end = in + (i + 1) * channel_size;
out[i] = std::abs(*(std::max_element(start, end, Compare<T>())));
}
}
};
template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;
template <typename T> template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> { struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx, void operator()(const platform::CPUDeviceContext& ctx,
...@@ -53,6 +68,36 @@ struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> { ...@@ -53,6 +68,36 @@ struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>; template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int channel,
framework::Tensor* out) {
auto* scale_data = scale.data<T>();
auto* in_data = in.data<T>();
auto* out_data = out->mutable_data<T>(ctx.GetPlace());
const int channel_size = in.numel() / channel;
platform::Transform<platform::CPUDeviceContext> trans;
for (int i = 0; i < channel; i++) {
T s = scale_data[i];
auto* start = in_data + i * channel_size;
auto* end = in_data + (i + 1) * channel_size;
trans(ctx, start, end, out_data + i * channel_size,
ClipFunctor<T>(-s, s));
}
for (int i = 0; i < channel; i++) {
T s = scale_data[i];
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round();
}
}
};
template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
float>;
template <typename T> template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> { struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& ctx, void operator()(const platform::CPUDeviceContext& ctx,
...@@ -169,10 +214,10 @@ class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel { ...@@ -169,10 +214,10 @@ class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
ctx->HasOutput("Out"), ctx->HasOutput("Out"),
"Output(Out) of FakeChannelWiseQuantizeOp should not be null."); "Output(Out) of FakeChannelWiseQuantizeOp should not be null.");
PADDLE_ENFORCE( PADDLE_ENFORCE(
ctx->HasOutput("OutScales"), ctx->HasOutput("OutScale"),
"Output(Scales) of FakeChannelWiseQuantizeOp should not be null."); "Output(Scale) of FakeChannelWiseQuantizeOp should not be null.");
ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->SetOutputDim("OutScales", {ctx->GetInputDim("X")[0]}); ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[0]});
ctx->ShareLoD("X", /*->*/ "Out"); ctx->ShareLoD("X", /*->*/ "Out");
} }
...@@ -192,7 +237,7 @@ class FakeChannelWiseQuantizeAbsMaxOpMaker ...@@ -192,7 +237,7 @@ class FakeChannelWiseQuantizeAbsMaxOpMaker
AddOutput("Out", AddOutput("Out",
"(Tensor) Output of quantized low level tensor, " "(Tensor) Output of quantized low level tensor, "
"but also saved as float data type."); "but also saved as float data type.");
AddOutput("OutScales", "(Tensor) Current channel wise scale"); AddOutput("OutScale", "(Tensor) Current channel wise scale");
AddAttr<int>("bit_length", "(int, default 8)") AddAttr<int>("bit_length", "(int, default 8)")
.SetDefault(8) .SetDefault(8)
.AddCustomChecker([](const int& bit_length) { .AddCustomChecker([](const int& bit_length) {
......
...@@ -74,6 +74,45 @@ struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> { ...@@ -74,6 +74,45 @@ struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>; template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T>
__global__ void FindChannelAbsMaxKernel(const T* in, const int n, const int c,
T* out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
extern __shared__ T shared_max_data[];
shared_max_data[tid] = T(0);
for (int i = tid; i < channel_size; i += blockDim.x) {
T tmp = fabs(in_c[i]);
if (tmp > shared_max_data[tid]) {
shared_max_data[tid] = tmp;
}
}
__syncthreads();
for (int i = blockDim.x / 2; i > 0; i >>= 1) {
if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
shared_max_data[tid] = shared_max_data[tid + i];
}
__syncthreads();
}
if (tid == 0) {
out[blockIdx.x] = shared_max_data[0];
}
}
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx, const T* in,
const int num, const int channel, T* out) {
int block = 1024;
int grid = channel;
FindChannelAbsMaxKernel<T><<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(
in, num, channel, out);
}
};
template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T> template <typename T>
__global__ void ClipAndQuantKernel(const T* in, const T* scale, __global__ void ClipAndQuantKernel(const T* in, const T* scale,
const int bin_cnt, const int n, T* out) { const int bin_cnt, const int n, T* out) {
...@@ -82,14 +121,76 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale, ...@@ -82,14 +121,76 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale,
T s = scale[0]; T s = scale[0];
for (int i = bid; i < n; i += blockDim.x * gridDim.x) { for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T x = in[bid]; T x = in[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt / s * v;
out[i] = round(v);
}
}
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
}
};
template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;
template <typename T>
__global__ void ChannelClipAndQuantKernel(const T* in, const T* scale,
const int bin_cnt, const int n,
const int c, T* out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
T s = scale[blockIdx.x];
for (int i = tid; i < channel_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x; T v = x > s ? s : x;
v = v < -s ? -s : v; v = v < -s ? -s : v;
v = bin_cnt / s * v; v = bin_cnt / s * v;
out[bid] = round(v); out_c[i] = round(v);
} }
} }
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int channel,
framework::Tensor* out) {
int num = in.numel();
int block = 1024;
int grid = channel;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
ChannelClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, channel, out_data);
}
};
template struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext,
float>;
template <typename T> template <typename T>
__global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale, __global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale,
const T* last_scale, const T* last_scale,
...@@ -182,26 +283,6 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> { ...@@ -182,26 +283,6 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
template struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, template struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext,
float>; float>;
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
}
};
template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -42,6 +42,19 @@ struct FindRangeAbsMaxFunctor { ...@@ -42,6 +42,19 @@ struct FindRangeAbsMaxFunctor {
framework::Tensor* scales_arr, framework::Tensor* out_scale); framework::Tensor* scales_arr, framework::Tensor* out_scale);
}; };
template <typename DeviceContext, typename T>
struct FindChannelAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const T* in, const int num,
const int channel, T* out);
};
template <typename DeviceContext, typename T>
struct ChannelClipAndFakeQuantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
const int channel, framework::Tensor* out);
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
struct FindMovingAverageAbsMaxFunctor { struct FindMovingAverageAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in_accum, void operator()(const DeviceContext& ctx, const framework::Tensor& in_accum,
...@@ -78,29 +91,18 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> { ...@@ -78,29 +91,18 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
auto* in = context.Input<framework::Tensor>("X"); auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out"); auto* out = context.Output<framework::Tensor>("Out");
auto* out_scales = context.Output<framework::Tensor>("OutScales"); auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_scales_data = out_scales->mutable_data<T>(context.GetPlace()); T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
out->mutable_data<T>(context.GetPlace()); out->mutable_data<T>(context.GetPlace());
int bit_length = context.Attr<int>("bit_length"); int bit_length = context.Attr<int>("bit_length");
int bin_cnt = std::pow(2, bit_length - 1) - 1; int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev_ctx = context.template device_context<DeviceContext>(); auto& dev_ctx = context.template device_context<DeviceContext>();
auto find_abs_max = FindAbsMaxFunctor<DeviceContext, T>(); FindChannelAbsMaxFunctor<DeviceContext, T>()(
for (int64_t i = 0; i < in->dims()[0]; i++) { dev_ctx, in->data<T>(), in->numel(), in->dims()[0], out_scale_data);
framework::Tensor one_channel = in->Slice(i, i + 1); ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
const T* one_channel_data = one_channel.data<T>(); dev_ctx, *in, *out_scale, bin_cnt, in->dims()[0], out);
find_abs_max(dev_ctx, one_channel_data, one_channel.numel(),
&out_scales_data[i]);
}
auto clip_quant = ClipAndFakeQuantFunctor<DeviceContext, T>();
for (int64_t i = 0; i < in->dims()[0]; i++) {
framework::Tensor one_channel_in = in->Slice(i, i + 1);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
framework::Tensor one_channel_scale = out_scales->Slice(i, i + 1);
clip_quant(dev_ctx, one_channel_in, one_channel_scale, bin_cnt,
&one_channel_out);
}
} }
}; };
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/layer_norm_op.h" #include "paddle/fluid/operators/layer_norm_op.h"
#include <memory>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -133,7 +134,7 @@ class LayerNormGradOp : public framework::OperatorWithKernel { ...@@ -133,7 +134,7 @@ class LayerNormGradOp : public framework::OperatorWithKernel {
} }
if (ctx->HasOutput(framework::GradVarName("Bias"))) { if (ctx->HasOutput(framework::GradVarName("Bias"))) {
ctx->SetOutputDim(framework::GradVarName("Bias"), ctx->SetOutputDim(framework::GradVarName("Bias"),
ctx->GetInputDim("Bias")); ctx->GetInputDim("Scale"));
} }
} }
...@@ -157,12 +158,39 @@ class LayerNormGradOp : public framework::OperatorWithKernel { ...@@ -157,12 +158,39 @@ class LayerNormGradOp : public framework::OperatorWithKernel {
} }
}; };
class LayerNormGradOpDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("layer_norm_grad");
op->SetInput("X", Input("X"));
op->SetInput("Mean", Output("Mean"));
op->SetInput("Variance", Output("Variance"));
if (ForwardOp().Inputs().count("Scale") > 0) {
op->SetInput("Scale", Input("Scale"));
op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
}
if (ForwardOp().Inputs().count("Bias") > 0) {
op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
}
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker, REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); ops::LayerNormGradOpDescMaker);
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp); REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>, layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>,
......
...@@ -245,11 +245,9 @@ class LayerNormGradKernel : public framework::OpKernel<T> { ...@@ -245,11 +245,9 @@ class LayerNormGradKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
const float epsilon = ctx.Attr<float>("epsilon"); const float epsilon = ctx.Attr<float>("epsilon");
auto x = *ctx.Input<Tensor>("X"); auto x = *ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* mean = ctx.Input<Tensor>("Mean"); auto* mean = ctx.Input<Tensor>("Mean");
auto* var = ctx.Input<Tensor>("Variance"); auto* var = ctx.Input<Tensor>("Variance");
auto* scale = ctx.Input<Tensor>("Scale"); auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y")); auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis"); const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
...@@ -275,10 +273,6 @@ class LayerNormGradKernel : public framework::OpKernel<T> { ...@@ -275,10 +273,6 @@ class LayerNormGradKernel : public framework::OpKernel<T> {
x.Resize(matrix_shape); x.Resize(matrix_shape);
temp.mutable_data<T>(matrix_shape, ctx.GetPlace()); temp.mutable_data<T>(matrix_shape, ctx.GetPlace());
if (!(bias && scale)) {
temp_norm.ShareDataWith(*y);
temp_norm.Resize(matrix_shape);
} else {
temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace()); temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
// get x_norm // get x_norm
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>( ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
...@@ -287,7 +281,6 @@ class LayerNormGradKernel : public framework::OpKernel<T> { ...@@ -287,7 +281,6 @@ class LayerNormGradKernel : public framework::OpKernel<T> {
ctx, &temp_norm, var, /*axis*/ 0, ctx, &temp_norm, var, /*axis*/ 0,
DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm); DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
} }
}
if (d_bias) { if (d_bias) {
d_bias->mutable_data<T>(ctx.GetPlace()); d_bias->mutable_data<T>(ctx.GetPlace());
......
...@@ -11,89 +11,27 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,89 +11,27 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <fstream>
#include "paddle/fluid/framework/data_type_transform.h" #include <string>
#include "paddle/fluid/framework/op_registry.h" #include <vector>
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/load_combine_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class LoadCombineOp : public framework::OperatorBase { class LoadCombineOp : public framework::OperatorWithKernel {
public: public:
LoadCombineOp(const std::string &type, using framework::OperatorWithKernel::OperatorWithKernel;
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs, void InferShape(framework::InferShapeContext *ctx) const override {}
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} protected:
framework::OpKernelType GetExpectedKernelType(
private: const framework::ExecutionContext &ctx) const override {
void RunImpl(const framework::Scope &scope, framework::OpKernelType kt = framework::OpKernelType(
const platform::Place &place) const override { framework::proto::VarType::FP32, ctx.GetPlace());
auto filename = Attr<std::string>("file_path"); return kt;
auto load_as_fp16 = Attr<bool>("load_as_fp16");
auto model_from_memory = Attr<bool>("model_from_memory");
auto out_var_names = Outputs("Out");
PADDLE_ENFORCE_GT(
static_cast<int>(out_var_names.size()), 0,
"The number of output variables should be greater than 0.");
if (!model_from_memory) {
std::ifstream fin(filename, std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin),
"Cannot open file %s for load_combine op", filename);
LoadParamsFromBuffer(scope, place, &fin, load_as_fp16, out_var_names);
} else {
PADDLE_ENFORCE(!filename.empty(), "Cannot load file from memory");
std::stringstream fin(filename, std::ios::in | std::ios::binary);
LoadParamsFromBuffer(scope, place, &fin, load_as_fp16, out_var_names);
}
}
void LoadParamsFromBuffer(
const framework::Scope &scope, const platform::Place &place,
std::istream *buffer, bool load_as_fp16,
const std::vector<std::string> &out_var_names) const {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
for (size_t i = 0; i < out_var_names.size(); i++) {
auto *out_var = scope.FindVar(out_var_names[i]);
PADDLE_ENFORCE(out_var != nullptr, "Output variable %s cannot be found",
out_var_names[i]);
auto *tensor = out_var->GetMutable<framework::LoDTensor>();
// Error checking
PADDLE_ENFORCE(static_cast<bool>(*buffer), "Cannot read more");
// Get data from fin to tensor
DeserializeFromStream(*buffer, tensor, dev_ctx);
auto in_dtype = tensor->type();
auto out_dtype =
load_as_fp16 ? framework::proto::VarType::FP16 : in_dtype;
if (in_dtype != out_dtype) {
// convert to float16 tensor
auto in_kernel_type = framework::OpKernelType(in_dtype, place);
auto out_kernel_type = framework::OpKernelType(out_dtype, place);
framework::LoDTensor fp16_tensor;
// copy LoD info to the new tensor
fp16_tensor.set_lod(tensor->lod());
framework::TransDataType(in_kernel_type, out_kernel_type, *tensor,
&fp16_tensor);
// reset output tensor
out_var->Clear();
tensor = out_var->GetMutable<framework::LoDTensor>();
tensor->set_lod(fp16_tensor.lod());
tensor->ShareDataWith(fp16_tensor);
}
}
buffer->peek();
PADDLE_ENFORCE(buffer->eof(),
"You are not allowed to load partial data via "
"load_combine_op, use load_op instead.");
} }
}; };
...@@ -136,9 +74,18 @@ that were saved using the SaveCombine operator. ...@@ -136,9 +74,18 @@ that were saved using the SaveCombine operator.
)DOC"); )DOC");
} }
}; };
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(load_combine, ops::LoadCombineOp, REGISTER_OPERATOR(load_combine, ops::LoadCombineOp,
ops::LoadCombineOpProtoMaker); ops::LoadCombineOpProtoMaker);
REGISTER_OP_CPU_KERNEL(
load_combine,
ops::LoadCombineOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::LoadCombineOpKernel<paddle::platform::CPUDeviceContext, double>,
ops::LoadCombineOpKernel<paddle::platform::CPUDeviceContext, int>,
ops::LoadCombineOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/load_combine_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
load_combine,
ops::LoadCombineOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::LoadCombineOpKernel<paddle::platform::CUDADeviceContext, double>,
ops::LoadCombineOpKernel<paddle::platform::CUDADeviceContext, int>,
ops::LoadCombineOpKernel<paddle::platform::CUDADeviceContext, int8_t>,
ops::LoadCombineOpKernel<paddle::platform::CUDADeviceContext, int64_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <fstream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class LoadCombineOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto place = ctx.GetPlace();
auto filename = ctx.Attr<std::string>("file_path");
auto load_as_fp16 = ctx.Attr<bool>("load_as_fp16");
auto model_from_memory = ctx.Attr<bool>("model_from_memory");
auto &out_var_names = ctx.Outputs("Out");
PADDLE_ENFORCE_GT(
static_cast<int>(out_var_names.size()), 0,
"The number of output variables should be greater than 0.");
if (!model_from_memory) {
std::ifstream fin(filename, std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin),
"Cannot open file %s for load_combine op", filename);
LoadParamsFromBuffer(ctx, place, &fin, load_as_fp16, out_var_names);
} else {
PADDLE_ENFORCE(!filename.empty(), "Cannot load file from memory");
std::stringstream fin(filename, std::ios::in | std::ios::binary);
LoadParamsFromBuffer(ctx, place, &fin, load_as_fp16, out_var_names);
}
}
void LoadParamsFromBuffer(
const framework::ExecutionContext &context, const platform::Place &place,
std::istream *buffer, bool load_as_fp16,
const std::vector<std::string> &out_var_names) const {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
auto out_vars = context.MultiOutputVar("Out");
for (size_t i = 0; i < out_var_names.size(); i++) {
PADDLE_ENFORCE(out_vars[i] != nullptr,
"Output variable %s cannot be found", out_var_names[i]);
auto *tensor = out_vars[i]->GetMutable<framework::LoDTensor>();
// Error checking
PADDLE_ENFORCE(static_cast<bool>(*buffer), "Cannot read more");
// Get data from fin to tensor
DeserializeFromStream(*buffer, tensor, dev_ctx);
auto in_dtype = tensor->type();
auto out_dtype =
load_as_fp16 ? framework::proto::VarType::FP16 : in_dtype;
if (in_dtype != out_dtype) {
// convert to float16 tensor
auto in_kernel_type = framework::OpKernelType(in_dtype, place);
auto out_kernel_type = framework::OpKernelType(out_dtype, place);
framework::LoDTensor fp16_tensor;
// copy LoD info to the new tensor
fp16_tensor.set_lod(tensor->lod());
framework::TransDataType(in_kernel_type, out_kernel_type, *tensor,
&fp16_tensor);
// reset output tensor
out_vars[i]->Clear();
tensor = out_vars[i]->GetMutable<framework::LoDTensor>();
tensor->set_lod(fp16_tensor.lod());
tensor->ShareDataWith(fp16_tensor);
}
}
buffer->peek();
PADDLE_ENFORCE(buffer->eof(),
"You are not allowed to load partial data via "
"load_combine_op, use load_op instead.");
}
};
} // namespace operators
} // namespace paddle
...@@ -11,89 +11,26 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,89 +11,26 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <fstream>
#include "paddle/fluid/framework/data_type_transform.h" #include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/operators/load_op.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class LoadOp : public framework::OperatorBase { class LoadOp : public framework::OperatorWithKernel {
public: public:
LoadOp(const std::string &type, const framework::VariableNameMap &inputs, using framework::OperatorWithKernel::OperatorWithKernel;
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
auto filename = Attr<std::string>("file_path");
std::ifstream fin(filename, std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s for load op",
filename);
auto out_var_name = Output("Out"); void InferShape(framework::InferShapeContext *ctx) const override {}
auto *out_var = scope.FindVar(out_var_name);
PADDLE_ENFORCE(out_var != nullptr,
"Output variable %s cannot be found in scope %p",
out_var_name, &scope);
if (out_var->IsType<framework::LoDTensor>()) { protected:
LoadLodTensor(fin, place, out_var); framework::OpKernelType GetExpectedKernelType(
} else if (out_var->IsType<framework::SelectedRows>()) { const framework::ExecutionContext &ctx) const override {
LoadSelectedRows(fin, place, out_var); framework::OpKernelType kt = framework::OpKernelType(
} else { framework::proto::VarType::FP32, platform::CPUPlace());
PADDLE_ENFORCE( return kt;
false,
"Load only support LoDTensor and SelectedRows, %s has wrong type",
out_var_name);
}
}
void LoadLodTensor(std::istream &fin, const platform::Place &place,
framework::Variable *var) const {
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
auto *tensor = var->GetMutable<framework::LoDTensor>();
DeserializeFromStream(fin, tensor, dev_ctx);
auto load_as_fp16 = Attr<bool>("load_as_fp16");
auto in_dtype = tensor->type();
auto out_dtype = load_as_fp16 ? framework::proto::VarType::FP16 : in_dtype;
if (in_dtype != out_dtype) {
// convert to float16 tensor
auto in_kernel_type = framework::OpKernelType(in_dtype, place);
auto out_kernel_type = framework::OpKernelType(out_dtype, place);
framework::LoDTensor fp16_tensor;
// copy LoD info to the new tensor
fp16_tensor.set_lod(tensor->lod());
framework::TransDataType(in_kernel_type, out_kernel_type, *tensor,
&fp16_tensor);
// reset output tensor
var->Clear();
tensor = var->GetMutable<framework::LoDTensor>();
tensor->set_lod(fp16_tensor.lod());
tensor->ShareDataWith(fp16_tensor);
}
}
void LoadSelectedRows(std::istream &fin, const platform::Place &place,
framework::Variable *var) const {
auto *selectedRows = var->GetMutable<framework::SelectedRows>();
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
framework::DeserializeFromStream(fin, selectedRows, dev_ctx);
selectedRows->SyncIndex();
} }
}; };
...@@ -116,8 +53,15 @@ class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker { ...@@ -116,8 +53,15 @@ class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"file."); "file.");
} }
}; };
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(load, ops::LoadOp, ops::LoadOpProtoMaker); REGISTER_OPERATOR(load, ops::LoadOp, ops::LoadOpProtoMaker);
REGISTER_OP_CPU_KERNEL(
load, ops::LoadOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::LoadOpKernel<paddle::platform::CPUDeviceContext, double>,
ops::LoadOpKernel<paddle::platform::CPUDeviceContext, int>,
ops::LoadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/load_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
load, ops::LoadOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::LoadOpKernel<paddle::platform::CUDADeviceContext, double>,
ops::LoadOpKernel<paddle::platform::CUDADeviceContext, int>,
ops::LoadOpKernel<paddle::platform::CUDADeviceContext, int8_t>,
ops::LoadOpKernel<paddle::platform::CUDADeviceContext, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <fstream>
#include <string>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class LoadOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto place = ctx.GetPlace();
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
auto filename = ctx.Attr<std::string>("file_path");
std::ifstream fin(filename, std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s for load op",
filename);
auto out_var_name = ctx.Outputs("Out").data();
auto *out_var = ctx.OutputVar("Out");
PADDLE_ENFORCE(out_var != nullptr, "Output variable %s cannot be found ",
out_var_name);
PADDLE_ENFORCE(out_var != nullptr, "Output variable cannot be found ");
if (out_var->IsType<framework::LoDTensor>()) {
LoadLodTensor(fin, place, out_var, ctx);
} else if (out_var->IsType<framework::SelectedRows>()) {
LoadSelectedRows(fin, place, out_var);
} else {
PADDLE_ENFORCE(
false,
"Load only support LoDTensor and SelectedRows, %s has wrong type",
out_var_name);
}
}
void LoadLodTensor(std::istream &fin, const platform::Place &place,
framework::Variable *var,
const framework::ExecutionContext &ctx) const {
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
auto *tensor = var->GetMutable<framework::LoDTensor>();
DeserializeFromStream(fin, tensor, dev_ctx);
auto load_as_fp16 = ctx.Attr<bool>("load_as_fp16");
auto in_dtype = tensor->type();
auto out_dtype = load_as_fp16 ? framework::proto::VarType::FP16 : in_dtype;
if (in_dtype != out_dtype) {
// convert to float16 tensor
auto in_kernel_type = framework::OpKernelType(in_dtype, place);
auto out_kernel_type = framework::OpKernelType(out_dtype, place);
framework::LoDTensor fp16_tensor;
// copy LoD info to the new tensor
fp16_tensor.set_lod(tensor->lod());
framework::TransDataType(in_kernel_type, out_kernel_type, *tensor,
&fp16_tensor);
// reset output tensor
var->Clear();
tensor = var->GetMutable<framework::LoDTensor>();
tensor->set_lod(fp16_tensor.lod());
tensor->ShareDataWith(fp16_tensor);
}
}
void LoadSelectedRows(std::istream &fin, const platform::Place &place,
framework::Variable *var) const {
auto *selectedRows = var->GetMutable<framework::SelectedRows>();
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
framework::DeserializeFromStream(fin, selectedRows, dev_ctx);
selectedRows->SyncIndex();
}
};
} // namespace operators
} // namespace paddle
...@@ -32,7 +32,10 @@ class LoDResetOp : public framework::OperatorWithKernel { ...@@ -32,7 +32,10 @@ class LoDResetOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GT(level0.size(), 1, PADDLE_ENFORCE_GT(level0.size(), 1,
"If Input(Y) not provided, the target lod should be " "If Input(Y) not provided, the target lod should be "
"specified by attribute `target_lod`."); "specified by attribute `target_lod`.");
} else {
ctx->ShareLoD("Y", "Out");
} }
ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
} }
......
...@@ -78,12 +78,6 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -78,12 +78,6 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
"The numel of 'pad_value' can only be 1 or be equal to the " "The numel of 'pad_value' can only be 1 or be equal to the "
"'step_width'."); "'step_width'.");
if (!norm_by_times && seq_num == 1UL && pad_seq_len == max_seq_len) {
TensorCopy(seq_tensor, context.GetPlace(), context, pad_tensor);
pad_tensor->Resize(pad_tensor_dims);
return;
}
const int kBlockSize = 512; const int kBlockSize = 512;
/* At least use 32 threads to copy sequence_width elements, /* At least use 32 threads to copy sequence_width elements,
...@@ -129,12 +123,13 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> { ...@@ -129,12 +123,13 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len, CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
step_width, layout); step_width, layout);
/*
if (!norm_by_times && seq_num == 1UL && pad_seq_len == max_seq_len) { if (!norm_by_times && seq_num == 1UL && pad_seq_len == max_seq_len) {
TensorCopy(pad_tensor, context.GetPlace(), context, seq_tensor); TensorCopy(pad_tensor, context.GetPlace(), context, seq_tensor);
seq_tensor->Resize(seq_tensor_dims); seq_tensor->Resize(seq_tensor_dims);
return; return;
} }
*/
const int kBlockSize = 512; const int kBlockSize = 512;
......
...@@ -290,8 +290,10 @@ class MatMulOp : public framework::OperatorWithKernel { ...@@ -290,8 +290,10 @@ class MatMulOp : public framework::OperatorWithKernel {
context->Attrs().Get<bool>("transpose_Y")); context->Attrs().Get<bool>("transpose_Y"));
PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_); PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_);
if (context->IsRuntime()) {
PADDLE_ENFORCE(mat_dim_x.batch_size_ == mat_dim_y.batch_size_ || PADDLE_ENFORCE(mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0); mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0);
}
std::vector<int64_t> dim_out; std::vector<int64_t> dim_out;
if (mat_dim_x.batch_size_ != 0) { if (mat_dim_x.batch_size_ != 0) {
dim_out = framework::vectorize(dim_x); dim_out = framework::vectorize(dim_x);
......
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#include <memory> #include <memory>
#include "paddle/fluid/operators/concat_op.h" #include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -38,15 +39,20 @@ static void EnforceLayouts(const std::vector<const Tensor*> inputs) { ...@@ -38,15 +39,20 @@ static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
} }
static memory::primitive_desc CreateMemPrimDesc(const Tensor& input, static memory::primitive_desc CreateMemPrimDesc(const Tensor& input,
const mkldnn::engine& engine) { const mkldnn::engine& engine,
constexpr auto data_type = mkldnn::memory::f32; const memory::data_type& dt) {
const auto dims = paddle::framework::vectorize2int(input.dims()); const auto dims = paddle::framework::vectorize2int(input.dims());
const auto format = input.format(); const auto format = input.format();
auto description = memory::desc(dims, data_type, format); auto description = memory::desc(dims, dt, format);
auto mem_prim_desc = memory::primitive_desc(description, engine); auto mem_prim_desc = memory::primitive_desc(description, engine);
return mem_prim_desc; return mem_prim_desc;
} }
static mkldnn::memory::format GetDstMemFormat(
const concat::primitive_desc& concat_pd) {
return (memory::format)concat_pd.dst_primitive_desc().desc().data.format;
}
static platform::CPUPlace GetCpuPlace( static platform::CPUPlace GetCpuPlace(
const paddle::framework::ExecutionContext& ctx) { const paddle::framework::ExecutionContext& ctx) {
auto place = ctx.GetPlace(); auto place = ctx.GetPlace();
...@@ -61,14 +67,30 @@ static const mkldnn::engine& GetMKLDNNEngine( ...@@ -61,14 +67,30 @@ static const mkldnn::engine& GetMKLDNNEngine(
return dev_ctx.GetEngine(); return dev_ctx.GetEngine();
} }
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
const std::vector<const Tensor*> multi_input,
const int64_t& concat_axis, const memory::data_type& dt) {
std::string key;
key.reserve(platform::MKLDNNHandler::MaxKeyLength);
for (size_t i = 0; i < multi_input.size(); i++) {
platform::MKLDNNHandler::AppendKeyDims(
&key, paddle::framework::vectorize2int(multi_input[i]->dims()));
}
platform::MKLDNNHandler::AppendKey(&key, std::to_string(concat_axis));
platform::MKLDNNHandler::AppendKey(&key, ctx.op().Output("Out"));
platform::MKLDNNHandler::AppendKey(&key, std::to_string(dt));
return key;
}
template <typename T> template <typename T>
class ConcatPrimitiveFactory { class ConcatPrimitiveFactory {
public: public:
concat::primitive_desc CreateConcatPrimDescriptor( concat::primitive_desc CreateConcatPrimDescriptor(
const std::vector<const Tensor*> multi_input, Tensor* output, const std::vector<const Tensor*> multi_input, Tensor* output,
int concat_axis, const mkldnn::engine& mkldnn_engine) { int concat_axis, const mkldnn::engine& mkldnn_engine,
CreateSourcesDescriptors(multi_input, mkldnn_engine); const memory::data_type& dt = memory::data_type::f32) {
auto dst_desc = CreateDstMemDescriptor(output); CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
auto dst_desc = CreateDstMemDescriptor(output, dt);
return concat::primitive_desc(dst_desc, concat_axis, srcs_pd); return concat::primitive_desc(dst_desc, concat_axis, srcs_pd);
} }
...@@ -79,23 +101,39 @@ class ConcatPrimitiveFactory { ...@@ -79,23 +101,39 @@ class ConcatPrimitiveFactory {
return concat(concat_pd, inputs, dst_mem.get()); return concat(concat_pd, inputs, dst_mem.get());
} }
void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
void* handler) {
srcs[i].set_data_handle(handler);
}
void SetDstDataHandle(const memory& dst_mem, void* handler) {
dst_mem.set_data_handle(handler);
}
std::vector<memory> GetSrcs() { return srcs; }
memory GetDst() { return dst_mem.get(); }
private: private:
memory::desc CreateDstMemDescriptor(Tensor* output) { memory::desc CreateDstMemDescriptor(Tensor* output,
const memory::data_type& dt) {
auto dst_dims = paddle::framework::vectorize2int(output->dims()); auto dst_dims = paddle::framework::vectorize2int(output->dims());
return memory::desc(dst_dims, platform::MKLDNNGetDataType<T>(), return memory::desc(dst_dims, dt, memory::format::any);
memory::format::any);
} }
mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd, mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd,
Tensor* output, platform::CPUPlace place) { Tensor* output,
const platform::CPUPlace& place) {
return memory(concat_pd.dst_primitive_desc(), return memory(concat_pd.dst_primitive_desc(),
output->mutable_data<T>(place)); output->mutable_data<T>(place));
} }
void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input, void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
const mkldnn::engine& mkldnn_engine) { const mkldnn::engine& mkldnn_engine,
const memory::data_type& dt) {
for (size_t i = 0; i < multi_input.size(); i++) { for (size_t i = 0; i < multi_input.size(); i++) {
auto mem_prim_desc = CreateMemPrimDesc(*multi_input[i], mkldnn_engine); auto mem_prim_desc =
CreateMemPrimDesc(*multi_input[i], mkldnn_engine, dt);
srcs_pd.push_back(mem_prim_desc); srcs_pd.push_back(mem_prim_desc);
srcs.push_back( srcs.push_back(
memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>()))); memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
...@@ -120,21 +158,59 @@ template <typename T> ...@@ -120,21 +158,59 @@ template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> { class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public: public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override { void Compute(const paddle::framework::ExecutionContext& ctx) const override {
auto place = GetCpuPlace(ctx);
const auto& mkldnn_engine = GetMKLDNNEngine(ctx);
auto multi_input = ctx.MultiInput<Tensor>("X"); auto multi_input = ctx.MultiInput<Tensor>("X");
EnforceLayouts(multi_input); EnforceLayouts(multi_input);
Tensor* output = ctx.Output<Tensor>("Out"); Tensor* output = ctx.Output<Tensor>("Out");
int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis")); int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
auto place = GetCpuPlace(ctx);
memory::data_type dt =
paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
ConcatPrimitiveFactory<T> prim_creator; ConcatPrimitiveFactory<T> prim_creator;
auto concat_pd = prim_creator.CreateConcatPrimDescriptor( std::string key = CreateKey(ctx, multi_input, concat_axis, dt);
multi_input, output, static_cast<int>(concat_axis), mkldnn_engine); const std::string key_prim = key + "@concat_p";
auto concat = prim_creator.CreateConcatPrimitive(concat_pd, output, place); const std::string key_concat_pd = key + "@concat_pd";
stream(stream::kind::eager).submit({concat}).wait(); const std::string key_srcs = key + "@concat_srcs";
const std::string key_dst = key + "@concat_dst";
std::shared_ptr<concat::primitive_desc> concat_pd;
std::shared_ptr<std::vector<memory>> srcs;
std::shared_ptr<memory> dst_mem;
auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));
if (concat_p == nullptr) {
const auto& mkldnn_engine = dev_ctx.GetEngine();
concat_pd = std::make_shared<concat::primitive_desc>(
prim_creator.CreateConcatPrimDescriptor(multi_input, output,
static_cast<int>(concat_axis),
mkldnn_engine, dt));
concat_p = std::make_shared<concat>(
prim_creator.CreateConcatPrimitive(*concat_pd, output, place));
srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
dst_mem = std::make_shared<memory>(prim_creator.GetDst());
dev_ctx.SetBlob(key_prim, concat_p);
dev_ctx.SetBlob(key_concat_pd, concat_pd);
dev_ctx.SetBlob(key_srcs, srcs);
dev_ctx.SetBlob(key_dst, dst_mem);
} else {
srcs = std::static_pointer_cast<std::vector<memory>>(
dev_ctx.GetBlob(key_srcs));
dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
concat_pd = std::static_pointer_cast<concat::primitive_desc>(
dev_ctx.GetBlob(key_concat_pd));
for (size_t i = 0; i < multi_input.size(); i++) {
prim_creator.SetSrcDataHandleByIndex(
*srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
}
prim_creator.SetDstDataHandle(*dst_mem, output->mutable_data<T>(place));
}
stream(stream::kind::eager).submit({*concat_p}).wait();
output->set_mkldnn_prim_desc(concat_pd.dst_primitive_desc()); output->set_mkldnn_prim_desc(concat_pd->dst_primitive_desc());
} }
}; };
} // namespace operators } // namespace operators
...@@ -143,4 +219,6 @@ class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> { ...@@ -143,4 +219,6 @@ class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace, REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
ops::ConcatMKLDNNOpKernel<float>) ops::ConcatMKLDNNOpKernel<float>,
ops::ConcatMKLDNNOpKernel<int8_t>,
ops::ConcatMKLDNNOpKernel<uint8_t>);
...@@ -92,12 +92,10 @@ static std::vector<std::vector<int>> NgraphOpIntervals( ...@@ -92,12 +92,10 @@ static std::vector<std::vector<int>> NgraphOpIntervals(
int size = ops->size(); int size = ops->size();
int left = 0; int left = 0;
while (left < size && ops->at(left)->Type() != framework::kFeedOpType) { while (left < size && ops->at(left)->Type() != framework::kFeedOpType &&
ops->at(left)->Type() != framework::kFetchOpType) {
++left; ++left;
} }
if (left == size) {
return intervals;
}
while (left < size && ops->at(left)->Type() == framework::kFeedOpType) { while (left < size && ops->at(left)->Type() == framework::kFeedOpType) {
for (auto& var_name_item : ops->at(left)->Outputs()) { for (auto& var_name_item : ops->at(left)->Outputs()) {
...@@ -112,10 +110,6 @@ static std::vector<std::vector<int>> NgraphOpIntervals( ...@@ -112,10 +110,6 @@ static std::vector<std::vector<int>> NgraphOpIntervals(
while (right < size && ops->at(right)->Type() != framework::kFetchOpType) { while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
++right; ++right;
} }
if (right == size) {
return intervals;
}
if (left >= right) return intervals;
int index = right; int index = right;
while (index < size && ops->at(index)->Type() == framework::kFetchOpType) { while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
...@@ -127,6 +121,10 @@ static std::vector<std::vector<int>> NgraphOpIntervals( ...@@ -127,6 +121,10 @@ static std::vector<std::vector<int>> NgraphOpIntervals(
++index; ++index;
} }
if (left == size || ops->at(left)->Type() == framework::kFetchOpType) {
left = 0;
}
// (left, right - 1) represents indices between feed and fetch // (left, right - 1) represents indices between feed and fetch
int pivot = left; int pivot = left;
while (pivot < right) { while (pivot < right) {
...@@ -234,6 +232,7 @@ NgraphEngine::NgraphEngine(const framework::Scope& scope, ...@@ -234,6 +232,7 @@ NgraphEngine::NgraphEngine(const framework::Scope& scope,
} }
void NgraphEngine::Prepare(const std::vector<int>& interval) { void NgraphEngine::Prepare(const std::vector<int>& interval) {
bool has_fetch = false, is_full = false;
for (auto& var : p_bdesc->AllVars()) { for (auto& var : p_bdesc->AllVars()) {
if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS || if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
var->GetType() == framework::proto::VarType::LOD_TENSOR || var->GetType() == framework::proto::VarType::LOD_TENSOR ||
...@@ -264,6 +263,9 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) { ...@@ -264,6 +263,9 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) {
std::vector<paddle::framework::OpDesc*> ops_desc; std::vector<paddle::framework::OpDesc*> ops_desc;
for (auto op_desc : p_bdesc->AllOps()) { for (auto op_desc : p_bdesc->AllOps()) {
ops_desc.emplace_back(op_desc); ops_desc.emplace_back(op_desc);
if (op_desc->Type() == framework::kFetchOpType) {
has_fetch = true;
}
} }
for (auto op_desc : ops_desc) { for (auto op_desc : ops_desc) {
...@@ -276,11 +278,11 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) { ...@@ -276,11 +278,11 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) {
if (interval[0] > 0 && if (interval[0] > 0 &&
ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType && ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType &&
interval[1] < static_cast<int>(ops_desc.size()) && interval[1] < static_cast<int>(ops_desc.size()) &&
ops_desc.at(interval.at(1))->Type() == framework::kFetchOpType) { ops_desc.at(interval[1])->Type() == framework::kFetchOpType) {
this->op_state_ = OpState::FULL; is_full = true;
} }
if (this->op_state_ == OpState::FULL) { if (is_full) {
this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN; this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN;
} else { } else {
this->op_state_ = this->op_state_ =
...@@ -293,7 +295,8 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) { ...@@ -293,7 +295,8 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) {
framework::OpRegistry::CreateOp(*(ops_desc[idx]))); framework::OpRegistry::CreateOp(*(ops_desc[idx])));
++idx; ++idx;
} }
while (ops_desc.at(idx)->Type() != framework::kFetchOpType) { while (idx < static_cast<int>(ops_desc.size()) &&
ops_desc.at(idx)->Type() != framework::kFetchOpType) {
auto op_desc = ops_desc.at(idx); auto op_desc = ops_desc.at(idx);
for (auto& var_name_item : op_desc->Inputs()) { for (auto& var_name_item : op_desc->Inputs()) {
for (auto& var_name : var_name_item.second) { for (auto& var_name : var_name_item.second) {
...@@ -303,6 +306,10 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) { ...@@ -303,6 +306,10 @@ void NgraphEngine::Prepare(const std::vector<int>& interval) {
++idx; ++idx;
} }
if (!has_fetch) {
op_state_ = OpState::UNKNOWN;
}
BuildNgIO(ops_desc, interval); BuildNgIO(ops_desc, interval);
} }
...@@ -318,7 +325,8 @@ void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc, ...@@ -318,7 +325,8 @@ void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
const bool is_output = outputs.find(var_name) != outputs.end(); const bool is_output = outputs.find(var_name) != outputs.end();
if (!is_output && if (!is_output &&
std::find(var_in_.begin(), var_in_.end(), var_name) == std::find(var_in_.begin(), var_in_.end(), var_name) ==
var_in_.end()) { var_in_.end() &&
scope_.FindVar(var_name)) {
// fill var_in here to keep lhs and rhs order // fill var_in here to keep lhs and rhs order
this->var_in_.emplace_back(var_name); this->var_in_.emplace_back(var_name);
} }
...@@ -378,6 +386,7 @@ void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc, ...@@ -378,6 +386,7 @@ void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
} }
} }
} }
for (size_t i = 0; i < var_in_.size(); ++i) { for (size_t i = 0; i < var_in_.size(); ++i) {
auto var_name = var_in_[i]; auto var_name = var_in_[i];
if (persistables_.find(var_name) == persistables_.end()) { if (persistables_.find(var_name) == persistables_.end()) {
......
...@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifndef PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_ #pragma once
#define PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_
#include <memory> #include <memory>
#include <set> #include <set>
#include <string> #include <string>
...@@ -35,7 +35,6 @@ enum class OpState { /* nGraph support state on ops */ ...@@ -35,7 +35,6 @@ enum class OpState { /* nGraph support state on ops */
PARTIAL_TRAIN, /* Support partial ops for train */ PARTIAL_TRAIN, /* Support partial ops for train */
FULL_TEST, /* Support full list of ops for test */ FULL_TEST, /* Support full list of ops for test */
PARTIAL_TEST, /* Support partial list of ops for test */ PARTIAL_TEST, /* Support partial list of ops for test */
FULL, /* All ops supported from feed to fetch */
UNKNOWN /* Output all for debug purpose */ UNKNOWN /* Output all for debug purpose */
}; };
...@@ -119,4 +118,3 @@ class NgraphEngine { ...@@ -119,4 +118,3 @@ class NgraphEngine {
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
#endif // PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_
...@@ -27,13 +27,9 @@ namespace paddle { ...@@ -27,13 +27,9 @@ namespace paddle {
namespace operators { namespace operators {
namespace ngraphs { namespace ngraphs {
void BuildCrossEntropyNode( std::shared_ptr<ngraph::Node> GetCrossEntropy(
const std::shared_ptr<paddle::framework::OperatorBase>& op, std::shared_ptr<ngraph::Node> x, std::shared_ptr<ngraph::Node> label,
std::shared_ptr< const bool is_soft_label, int ignore_index) {
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map);
auto label_shape = label->get_shape(); auto label_shape = label->get_shape();
auto x_shape = x->get_shape(); auto x_shape = x->get_shape();
auto label_rank = label_shape.size(); auto label_rank = label_shape.size();
...@@ -46,18 +42,16 @@ void BuildCrossEntropyNode( ...@@ -46,18 +42,16 @@ void BuildCrossEntropyNode(
label_2d = paddle::platform::NgReshaper(label, label_2d_shape); label_2d = paddle::platform::NgReshaper(label, label_2d_shape);
} }
if (x_rank > 2) { if (x_rank > 2) {
x_2d_shape = paddle::platform::FlattenTo2d(x_shape, x_rank - 1); x_2d_shape = platform::FlattenTo2d(x_shape, x_rank - 1);
x_2d = paddle::platform::NgReshaper(x, x_2d_shape); x_2d = platform::NgReshaper(x, x_2d_shape);
} }
auto batch_size = x_2d_shape.at(0); auto batch_size = x_2d_shape.at(0);
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
const bool is_soft_label = op_attrs.Get<bool>("soft_label");
std::shared_ptr<ngraph::Node> node_1_hot = label_2d; std::shared_ptr<ngraph::Node> node_1_hot = label_2d;
if (!is_soft_label) { if (!is_soft_label) {
auto label_1d = paddle::platform::NgReshaper( auto label_1d =
label_2d, ngraph::Shape{label_2d_shape.at(0)}); platform::NgReshaper(label_2d, ngraph::Shape{label_2d_shape.at(0)});
node_1_hot = std::make_shared<ngraph::op::OneHot>(label_1d, x_2d_shape, 1); node_1_hot = std::make_shared<ngraph::op::OneHot>(label_1d, x_2d_shape, 1);
} }
if (x->get_element_type() != node_1_hot->get_element_type()) { if (x->get_element_type() != node_1_hot->get_element_type()) {
...@@ -76,11 +70,9 @@ void BuildCrossEntropyNode( ...@@ -76,11 +70,9 @@ void BuildCrossEntropyNode(
auto node_sum = auto node_sum =
std::make_shared<ngraph::op::Sum>(node_mul, ngraph::AxisSet{1}); std::make_shared<ngraph::op::Sum>(node_mul, ngraph::AxisSet{1});
auto node_neg = std::make_shared<ngraph::op::Negative>(node_sum); auto node_neg = std::make_shared<ngraph::op::Negative>(node_sum);
auto xe = auto xe = platform::NgReshaper(node_neg, ngraph::Shape{batch_size, 1});
paddle::platform::NgReshaper(node_neg, ngraph::Shape{batch_size, 1});
if (!is_soft_label) { if (!is_soft_label) {
auto ignore_index = op_attrs.Get<int>("ignore_index");
auto ignore_node = ngraph::op::Constant::create( auto ignore_node = ngraph::op::Constant::create(
label->get_element_type(), label_2d_shape, {ignore_index}); label->get_element_type(), label_2d_shape, {ignore_index});
auto not_equal_node = auto not_equal_node =
...@@ -89,21 +81,13 @@ void BuildCrossEntropyNode( ...@@ -89,21 +81,13 @@ void BuildCrossEntropyNode(
xe->get_element_type()); xe->get_element_type());
xe = xe * mask; xe = xe * mask;
} }
return xe;
paddle::platform::SetOutputNode(op, "Y", xe, ngb_node_map);
} }
void BuildCrossEntropyGradNode( std::shared_ptr<ngraph::Node> GetCrossEntropyGrad(
const std::shared_ptr<paddle::framework::OperatorBase>& op, std::shared_ptr<ngraph::Node> x, std::shared_ptr<ngraph::Node> label,
std::shared_ptr< std::shared_ptr<ngraph::Node> dy, const bool is_soft_label,
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>> int ignore_index) {
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
const bool is_soft_label = op_attrs.Get<bool>("soft_label");
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map);
auto dy = paddle::platform::GetInputNode(op, "Y@GRAD", ngb_node_map);
auto x_shape = x->get_shape(); auto x_shape = x->get_shape();
auto rank = x_shape.size(); auto rank = x_shape.size();
...@@ -111,9 +95,8 @@ void BuildCrossEntropyGradNode( ...@@ -111,9 +95,8 @@ void BuildCrossEntropyGradNode(
if (!is_soft_label) { if (!is_soft_label) {
auto label_shape = label->get_shape(); auto label_shape = label->get_shape();
label_shape.pop_back(); label_shape.pop_back();
label = paddle::platform::NgReshaper(label, label_shape); label = platform::NgReshaper(label, label_shape);
auto ignore_index = op_attrs.Get<int>("ignore_index");
auto ignore_node = ngraph::op::Constant::create( auto ignore_node = ngraph::op::Constant::create(
label->get_element_type(), label_shape, {ignore_index}); label->get_element_type(), label_shape, {ignore_index});
auto not_equal_node = auto not_equal_node =
...@@ -128,7 +111,7 @@ void BuildCrossEntropyGradNode( ...@@ -128,7 +111,7 @@ void BuildCrossEntropyGradNode(
auto dy_shape = dy->get_shape(); auto dy_shape = dy->get_shape();
dy_shape.pop_back(); dy_shape.pop_back();
auto dy_reshape = paddle::platform::NgReshaper(dy, dy_shape); auto dy_reshape = platform::NgReshaper(dy, dy_shape);
auto dy_bcast = std::make_shared<ngraph::op::Broadcast>( auto dy_bcast = std::make_shared<ngraph::op::Broadcast>(
dy_reshape, x_shape, ngraph::AxisSet{rank - 1}); dy_reshape, x_shape, ngraph::AxisSet{rank - 1});
if (x->get_element_type() != label->get_element_type()) { if (x->get_element_type() != label->get_element_type()) {
...@@ -140,7 +123,35 @@ void BuildCrossEntropyGradNode( ...@@ -140,7 +123,35 @@ void BuildCrossEntropyGradNode(
if (!is_soft_label) { if (!is_soft_label) {
xe_grad = xe_grad * mask; xe_grad = xe_grad * mask;
} }
return xe_grad;
}
void BuildCrossEntropyNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map);
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
const bool is_soft_label = op_attrs.Get<bool>("soft_label");
int ignore_index = op_attrs.Get<int>("ignore_index");
auto xe = GetCrossEntropy(x, label, is_soft_label, ignore_index);
paddle::platform::SetOutputNode(op, "Y", xe, ngb_node_map);
}
void BuildCrossEntropyGradNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
const bool is_soft_label = op_attrs.Get<bool>("soft_label");
int ignore_index = op_attrs.Get<int>("ignore_index");
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map);
auto dy = paddle::platform::GetInputNode(op, "Y@GRAD", ngb_node_map);
auto xe_grad = GetCrossEntropyGrad(x, label, dy, is_soft_label, ignore_index);
paddle::platform::SetOutputNode(op, "X@GRAD", xe_grad, ngb_node_map); paddle::platform::SetOutputNode(op, "X@GRAD", xe_grad, ngb_node_map);
} }
} // namespace ngraphs } // namespace ngraphs
......
...@@ -27,12 +27,7 @@ namespace paddle { ...@@ -27,12 +27,7 @@ namespace paddle {
namespace operators { namespace operators {
namespace ngraphs { namespace ngraphs {
void BuildSoftmaxNode( std::shared_ptr<ngraph::Node> GetSoftmax(std::shared_ptr<ngraph::Node> x) {
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto x_shape = x->get_shape(); auto x_shape = x->get_shape();
int rank = x_shape.size(); int rank = x_shape.size();
auto x_2d_shape = paddle::platform::FlattenTo2d(x_shape, rank - 1); auto x_2d_shape = paddle::platform::FlattenTo2d(x_shape, rank - 1);
...@@ -47,16 +42,11 @@ void BuildSoftmaxNode( ...@@ -47,16 +42,11 @@ void BuildSoftmaxNode(
-64., x_shifted); -64., x_shifted);
auto softmax = auto softmax =
std::make_shared<ngraph::op::Softmax>(x_clipped, ngraph::AxisSet{1}); std::make_shared<ngraph::op::Softmax>(x_clipped, ngraph::AxisSet{1});
paddle::platform::SetOutputNode(op, "Out", softmax, ngb_node_map); return softmax;
} }
void BuildSoftmaxGradNode( std::shared_ptr<ngraph::Node> GetSoftmaxGrad(
const std::shared_ptr<paddle::framework::OperatorBase>& op, std::shared_ptr<ngraph::Node> out, std::shared_ptr<ngraph::Node> dout) {
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto out = paddle::platform::GetInputNode(op, "Out", ngb_node_map);
auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
auto out_shape = out->get_shape(); auto out_shape = out->get_shape();
int rank = out_shape.size(); int rank = out_shape.size();
auto out_2d_shape = paddle::platform::FlattenTo2d(out_shape, rank - 1); auto out_2d_shape = paddle::platform::FlattenTo2d(out_shape, rank - 1);
...@@ -70,6 +60,27 @@ void BuildSoftmaxGradNode( ...@@ -70,6 +60,27 @@ void BuildSoftmaxGradNode(
auto node_bcast = std::make_shared<ngraph::op::Broadcast>( auto node_bcast = std::make_shared<ngraph::op::Broadcast>(
node_sum, out_2d_shape, ngraph::AxisSet{1}); node_sum, out_2d_shape, ngraph::AxisSet{1});
auto dx = (dout - node_bcast) * out; auto dx = (dout - node_bcast) * out;
return dx;
}
void BuildSoftmaxNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto softmax = GetSoftmax(x);
paddle::platform::SetOutputNode(op, "Out", softmax, ngb_node_map);
}
void BuildSoftmaxGradNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto out = paddle::platform::GetInputNode(op, "Out", ngb_node_map);
auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
auto dx = GetSoftmaxGrad(out, dout);
paddle::platform::SetOutputNode(op, "X@GRAD", dx, ngb_node_map); paddle::platform::SetOutputNode(op, "X@GRAD", dx, ngb_node_map);
} }
} // namespace ngraphs } // namespace ngraphs
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
...@@ -23,6 +23,9 @@ limitations under the License. */ ...@@ -23,6 +23,9 @@ limitations under the License. */
#include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/cuda_helper.h"
#include "paddle/fluid/platform/dynload/cublas.h" #include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h" #include "paddle/fluid/platform/dynload/cudnn.h"
#if !defined(__APPLE__) && !defined(_WIN32)
#include "paddle/fluid/platform/dynload/nccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/gpu_info.h"
#endif #endif
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册