未验证 提交 864b50c3 编写于 作者: Y Young-Flash 提交者: GitHub

[Hackathon NO.77] 为 Paddle-TRT 添加 bitwise 算子 (#51971)

* add bitwise_not trt converter

* run pre-commit

* modify neg_one_tensor_dims init way

* fix BOOL type support requires TensorRT 8.4

* fix int8 & uint8 type

* improve data type readability

* modify filter logic

* fix coverage CI
上级 3b055199
......@@ -2460,6 +2460,7 @@ USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu);
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(where);
USE_TRT_CONVERTER(bitwise_not);
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
USE_TRT_CONVERTER(swish);
......
......@@ -32,6 +32,7 @@ list(
shuffle_channel_op.cc
fill_any_like_op.cc
where_op.cc
bitwise_not_op.cc
one_hot_op.cc
swish_op.cc
silu_op.cc
......
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <NvInferRuntimeCommon.h>
#include <cstddef>
#include <iostream>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class BitwiseNotConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4) << "convert bitwise_not op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
nvinfer1::ILayer* layer = nullptr;
auto* input_tensor = engine_->GetITensor(op_desc.Input("X")[0]);
nvinfer1::DataType data_type = input_tensor->getType();
// for bool type: use UnaryOperation::kNOT, for int type: !x = -x - 1
if (data_type == nvinfer1::DataType::kBOOL) {
layer = TRT_ENGINE_ADD_LAYER(
engine_, Unary, *input_tensor, nvinfer1::UnaryOperation::kNOT);
} else {
nvinfer1::Dims input_dims = input_tensor->getDimensions();
// set up a elementwise -1 tensor, can not get the dims info for
// dynamic_shape so just let it broadcaste
nvinfer1::Dims neg_one_tensor_dims;
neg_one_tensor_dims.nbDims = input_dims.nbDims;
for (int i = 0; i < input_dims.nbDims; ++i) {
neg_one_tensor_dims.d[i] = 1;
}
nvinfer1::Weights weights{nvinfer1::DataType::kINT32, new int(-1), 1};
auto neg_one_tensor =
TRT_ENGINE_ADD_LAYER(engine_, Constant, neg_one_tensor_dims, weights)
->getOutput(0);
auto mul_neg_one =
TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*input_tensor,
*neg_one_tensor,
nvinfer1::ElementWiseOperation::kPROD);
layer = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*(mul_neg_one->getOutput(0)),
*neg_one_tensor,
nvinfer1::ElementWiseOperation::kSUM);
}
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "bitwise_not", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(bitwise_not, BitwiseNotConverter);
......@@ -1954,6 +1954,21 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if (op_type == "bitwise_not") {
#if !IS_TRT_VERSION_GE(8400)
auto* block = desc.Block();
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
auto dtype = x_var_desc->GetDataType();
if (dtype == framework::proto::VarType::BOOL ||
dtype == framework::proto::VarType::INT8 ||
dtype == framework::proto::VarType::UINT8) {
VLOG(3) << "BOOL / INT8 / UINT8 type support requires TensorRT 8.4";
return false;
}
#endif
}
if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
......@@ -2778,6 +2793,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"fc",
"shuffle_channel",
"where",
"bitwise_not",
"one_hot",
"one_hot_v2",
"swish",
......@@ -2935,6 +2951,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"fc",
"shuffle_channel",
"where",
"bitwise_not",
"one_hot",
"one_hot_v2",
"swish",
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import Any, Dict, List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertActivationTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
self.trt_param.workspace_size = 1073741824
def generate_input1(dims, batch, attrs: List[Dict[str, Any]]):
if dims == 1:
return np.random.random([32]).astype(np.bool8)
elif dims == 2:
return np.random.random([3, 32]).astype(np.int8)
elif dims == 3:
return np.random.random([3, 32, 32]).astype(np.int32)
else:
return np.random.random([batch, 3, 32, 32]).astype(np.int64)
for dims in [1, 2, 3, 4]:
for batch in [1, 4]:
self.dims = dims
dics = [{}]
ops_config = [
{
"op_type": 'bitwise_not',
"op_inputs": {"X": ["input_data"]},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[0],
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1, dims, batch, dics)
)
},
outputs=["output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [1]}
self.dynamic_shape.max_input_shape = {"input_data": [64]}
self.dynamic_shape.opt_input_shape = {"input_data": [32]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input_data": [1, 16]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 32]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 32]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 16]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 32]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 32, 32]}
else:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3, 16, 16]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 3, 32, 32]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 3, 32, 32]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
ver = paddle_infer.get_trt_compile_version()
trt_version = ver[0] * 1000 + ver[1] * 100 + ver[2] * 10
if trt_version >= 8400:
if self.dims == 1 and not dynamic_shape:
return 0, 3
return 1, 2
else:
if (self.dims == 1 and not dynamic_shape) or (
program_config.inputs['input_data'].dtype
in ['bool', 'int8', 'uint8']
):
return 0, 3
return 1, 2
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册