未验证 提交 861b84f5 编写于 作者: Y Yibing Liu 提交者: GitHub

Merge pull request #5300 from kuke/ctc_edit_distance_dev

Add edit distance operator
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/edit_distance_op.h"
namespace paddle {
namespace operators {
class EditDistanceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Hyps"), "Input(Hyps) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("Refs"), "Input(Refs) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
auto hyp_dims = ctx->GetInputDim("Hyps");
auto ref_dims = ctx->GetInputDim("Refs");
PADDLE_ENFORCE(hyp_dims.size() == 2 && hyp_dims[1] == 1,
"Input(Hyps) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1.");
PADDLE_ENFORCE(ref_dims.size() == 2 && ref_dims[1] == 1,
"Input(Refs) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1.");
ctx->SetOutputDim("Out", ctx->GetInputDim("Refs"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(framework::proto::DataType::FP32,
ctx.device_context());
}
};
class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
EditDistanceOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Hyps",
"(2-D LoDTensor<int>, 2nd dim. equal to 1) "
"The indices for hypothesis strings.");
AddInput("Refs",
"(2-D LoDTensor<int>, 2nd dim. equal to 1) "
"The indices for reference strings.");
AddAttr<bool>("normalized",
"(bool, default false) Indicated whether to normalize "
"the edit distance by the length of reference string.")
.SetDefault(false);
AddOutput("Out",
"(2-D Tensor with shape [`batch_size` x 1]) "
"The output edit distances of EditDistance operator.");
AddComment(R"DOC(
EditDistance operator computes the edit distances between a batch of hypothesis
strings and their references.
Edit distance, also called Levenshtein distance, measures how dissimilar two strings
are by counting the minimum number of operations to transform one string into anthor.
Here the operations include insertion, deletion, and substitution. For example,
given hypothesis string A = "kitten" and reference B = "sitting", the edit distance
is 3 for A will be transformed into B at least after two substitutions and one
insertion:
"kitten" -> "sitten" -> "sittin" -> "sitting"
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total
number denoted by `batch_size`, and the separation is specified by the LoD information.
And the `batch_size` reference strings are arranged in order in the same way in the
LoDTensor Input(Refs).
Output(Out) contains the `batch_size` results and each stands for the edit stance
for a pair of strings respectively. If Attr(normalized) is true, the edit distance
will be divided by the length of reference string.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(edit_distance, ops::EditDistanceOp, ops::EditDistanceOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
edit_distance, ops::EditDistanceKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/framework/op_registry.h"
#include "paddle/platform/cuda_helper.h"
#include "paddle/platform/gpu_info.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
template <typename T>
__global__ void FillFirstRow(T* dist, const int N) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if (idx < N + 1) {
dist[idx] = idx;
}
}
template <typename T>
__global__ void FillFirstColumn(T* dist, const int M, const int N) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if (idx < M + 1) {
dist[idx * (N + 1)] = idx;
}
}
template <typename T>
__global__ void Levenshtein(T* dist, const int* x1, const int* x2, const int M,
const int N, const int start) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
int offset = N;
int index = start + idx * offset;
int row = index / (N + 1);
int col = index % (N + 1);
if (row > 0 && col > 0 && row < M + 1 && col < N + 1) {
int cost = x1[row - 1] == x2[col - 1] ? 0 : 1;
int dels = dist[(row - 1) * (N + 1) + col] + 1;
int ins = dist[row * (N + 1) + col - 1] + 1;
int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost;
dist[index] = min(dels, min(ins, subs));
}
}
template <typename T>
__global__ void SetOutput(T* out, const T* dist, const int M, const int N,
bool normalized) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if (idx == 0) {
out[0] = normalized ? dist[M * (N + 1) + N] / N : dist[M * (N + 1) + N];
}
}
template <typename Place, typename T>
class EditDistanceGPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out_t = ctx.Output<framework::Tensor>("Out");
auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
auto normalized = ctx.Attr<bool>("normalized");
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream();
auto hyp_lod = x1_t->lod()[0];
auto ref_lod = x2_t->lod()[0];
PADDLE_ENFORCE(
hyp_lod.size() == ref_lod.size(),
"Input(Hyps) and Input(Refs) must have the same batch size.");
for (size_t i = 1; i < ref_lod.size(); ++i) {
PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1],
"Reference string %d is empty.", i);
}
auto num_strs = hyp_lod.size() - 1;
out_t->Resize({static_cast<int64_t>(num_strs), 1});
out_t->mutable_data<T>(ctx.GetPlace());
auto out = out_t->data<T>();
T distance = 0.0;
for (size_t num = 0; num < num_strs; num++) {
auto m = static_cast<int64_t>(hyp_lod[num + 1] - hyp_lod[num]);
auto n = static_cast<int64_t>(ref_lod[num + 1] - ref_lod[num]);
if (m == 0 || n == 0) {
distance = std::max(m, n);
if (normalized) {
PADDLE_ENFORCE(n > 0,
"The reference string (#%d) cannot be empty "
"when Attr(normalized) is enabled.",
n);
distance = distance / n;
}
memory::Copy(boost::get<Place>(ctx.GetPlace()), out + num,
platform::CPUPlace(), &distance, sizeof(T), stream);
} else {
framework::Tensor dist_t;
dist_t.Resize({m + 1, n + 1});
dist_t.mutable_data<T>(ctx.GetPlace());
auto dist = dist_t.data<T>();
auto x1 = x1_t->data<int>() + hyp_lod[num];
auto x2 = x2_t->data<int>() + ref_lod[num];
FillFirstColumn<T><<<1 + m / PADDLE_CUDA_NUM_THREADS,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n);
FillFirstRow<T><<<1 + n / PADDLE_CUDA_NUM_THREADS,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n);
// Compute the elements of distance matrix in the anti-diagonal diretion
for (int64_t slice = 2; slice < m + n + 1; ++slice) {
int z_m = slice < m + 1 ? 0 : slice - m;
int z_n = slice < n + 1 ? 0 : slice - n;
int size = slice - (z_m + z_n) + 1; // number of elments in the same
// anti-diagonal line to update
// the start index at which computes from
int start = slice < n + 1 ? slice : (z_n + 1) * (n + 1) - 1;
Levenshtein<T><<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2,
m, n, start);
}
SetOutput<T><<<1, 1, 0, stream>>>(out + num, dist, m, n, normalized);
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
edit_distance,
ops::EditDistanceGPUKernel<paddle::platform::CUDAPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class EditDistanceKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out_t = ctx.Output<framework::Tensor>("Out");
auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
auto normalized = ctx.Attr<bool>("normalized");
auto hyp_lod = x1_t->lod()[0];
auto ref_lod = x2_t->lod()[0];
PADDLE_ENFORCE(
hyp_lod.size() == ref_lod.size(),
"Input(Hyps) and Input(Refs) must have the same batch size.");
for (size_t i = 1; i < ref_lod.size(); ++i) {
PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1],
"Reference string %d is empty.", i);
}
auto num_strs = hyp_lod.size() - 1;
out_t->Resize({static_cast<int64_t>(num_strs), 1});
out_t->mutable_data<float>(ctx.GetPlace());
auto out = out_t->data<T>();
T distance = 0.0;
for (size_t num = 0; num < num_strs; ++num) {
auto m = static_cast<int64_t>(hyp_lod[num + 1] - hyp_lod[num]);
auto n = static_cast<int64_t>(ref_lod[num + 1] - ref_lod[num]);
if (m == 0) {
distance = n;
} else if (n == 0) {
distance = m;
} else {
framework::Tensor dist_t;
dist_t.Resize({m + 1, n + 1});
dist_t.mutable_data<T>(ctx.GetPlace());
auto dist = dist_t.data<T>();
auto x1 = x1_t->data<int>() + hyp_lod[num];
auto x2 = x2_t->data<int>() + ref_lod[num];
for (int64_t i = 0; i < m + 1; ++i) {
dist[i * (n + 1)] = i;
}
for (int64_t j = 0; j < n + 1; ++j) {
dist[j] = j;
}
for (int64_t i = 1; i < m + 1; ++i) {
for (int64_t j = 1; j < n + 1; ++j) {
int cost = x1[i - 1] == x2[j - 1] ? 0 : 1;
int dels = dist[(i - 1) * (n + 1) + j] + 1;
int ins = dist[i * (n + 1) + (j - 1)] + 1;
int subs = dist[(i - 1) * (n + 1) + (j - 1)] + cost;
dist[i * (n + 1) + j] = std::min(dels, std::min(ins, subs));
}
}
distance = dist[m * (n + 1) + n];
}
if (normalized) {
PADDLE_ENFORCE(n > 0,
"The reference string (#%d) cannot be empty "
"when Attr(normalized) is enabled.",
n);
distance = distance / n;
}
out[num] = distance;
}
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
def Levenshtein(hyp, ref):
""" Compute the Levenshtein distance between two strings.
:param hyp: hypothesis string in index
:type hyp: list
:param ref: reference string in index
:type ref: list
"""
m = len(hyp)
n = len(ref)
if m == 0:
return n
if n == 0:
return m
dist = np.zeros((m + 1, n + 1)).astype("float32")
for i in range(0, m + 1):
dist[i][0] = i
for j in range(0, n + 1):
dist[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
cost = 0 if hyp[i - 1] == ref[j - 1] else 1
deletion = dist[i - 1][j] + 1
insertion = dist[i][j - 1] + 1
substitution = dist[i - 1][j - 1] + cost
dist[i][j] = min(deletion, insertion, substitution)
return dist[m][n]
class TestEditDistanceOp(OpTest):
def setUp(self):
self.op_type = "edit_distance"
normalized = False
x1 = np.array([[0, 12, 3, 5, 8, 2]]).astype("int32")
x2 = np.array([[0, 12, 4, 7, 8]]).astype("int32")
x1 = np.transpose(x1)
x2 = np.transpose(x2)
x1_lod = [0, 1, 5]
x2_lod = [0, 3, 4]
num_strs = len(x1_lod) - 1
distance = np.zeros((num_strs, 1)).astype("float32")
for i in range(0, num_strs):
distance[i] = Levenshtein(
hyp=x1[x1_lod[i]:x1_lod[i + 1]],
ref=x2[x2_lod[i]:x2_lod[i + 1]])
if normalized is True:
len_ref = x2_lod[i + 1] - x2_lod[i]
distance[i] = distance[i] / len_ref
self.attrs = {'normalized': normalized}
self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
self.outputs = {'Out': distance}
def test_check_output(self):
self.check_output()
class TestEditDistanceOpNormalized(OpTest):
def setUp(self):
self.op_type = "edit_distance"
normalized = True
x1 = np.array([[0, 10, 3, 6, 5, 8, 2]]).astype("int32")
x2 = np.array([[0, 10, 4, 6, 7, 8]]).astype("int32")
x1 = np.transpose(x1)
x2 = np.transpose(x2)
x1_lod = [0, 1, 3, 6]
x2_lod = [0, 2, 3, 5]
num_strs = len(x1_lod) - 1
distance = np.zeros((num_strs, 1)).astype("float32")
for i in range(0, num_strs):
distance[i] = Levenshtein(
hyp=x1[x1_lod[i]:x1_lod[i + 1]],
ref=x2[x2_lod[i]:x2_lod[i + 1]])
if normalized is True:
len_ref = x2_lod[i + 1] - x2_lod[i]
distance[i] = distance[i] / len_ref
self.attrs = {'normalized': normalized}
self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
self.outputs = {'Out': distance}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册