提交 85e775d5 编写于 作者: T Travis CI

Deploy to GitHub Pages: f66c17b6

上级 424055f0
......@@ -719,18 +719,29 @@ Duplicable: False Optional: False</li>
<dd><p>Transpose Operator.</p>
<p>The input tensor will be permuted according to the axis values given.
The op functions is similar to how numpy.transpose works in python.</p>
<p>For example: input = numpy.arange(6).reshape((2,3))
the input is:
array([[0, 1, 2],</p>
<p>For example:</p>
<blockquote>
<div>[3, 4, 5]])</div></blockquote>
<p>given axis is: [1, 0]</p>
<p>output = input.transpose(axis)
<div><div class="highlight-text"><div class="highlight"><pre><span></span>input = numpy.arange(6).reshape((2,3))
the input is:
array([[0, 1, 2],
[3, 4, 5]])
given axis is:
[1, 0]
output = input.transpose(axis)
then the output is:
array([[0, 3],</p>
<blockquote>
<div>[1, 4],
[2, 5]])</div></blockquote>
array([[0, 3],
[1, 4],
[2, 5]])
</pre></div>
</div>
</div></blockquote>
<p>So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)</p>
<table class="docutils field-list" frame="void" rules="none">
......
......@@ -2214,7 +2214,7 @@
} ]
},{
"type" : "transpose",
"comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example: input = numpy.arange(6).reshape((2,3))\nthe input is:\narray([[0, 1, 2],\n [3, 4, 5]])\ngiven axis is: [1, 0]\n\noutput = input.transpose(axis)\nthen the output is:\narray([[0, 3],\n [1, 4],\n [2, 5]])\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n",
"comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example:\n\n .. code-block:: text\n\n input = numpy.arange(6).reshape((2,3))\n\n the input is:\n\n array([[0, 1, 2],\n [3, 4, 5]])\n\n given axis is:\n\n [1, 0]\n\n output = input.transpose(axis)\n\n then the output is:\n\n array([[0, 3],\n [1, 4],\n [2, 5]])\n\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n",
"inputs" : [
{
"name" : "X",
......
......@@ -732,18 +732,29 @@ Duplicable: False Optional: False</li>
<dd><p>Transpose Operator.</p>
<p>The input tensor will be permuted according to the axis values given.
The op functions is similar to how numpy.transpose works in python.</p>
<p>For example: input = numpy.arange(6).reshape((2,3))
the input is:
array([[0, 1, 2],</p>
<p>For example:</p>
<blockquote>
<div>[3, 4, 5]])</div></blockquote>
<p>given axis is: [1, 0]</p>
<p>output = input.transpose(axis)
<div><div class="highlight-text"><div class="highlight"><pre><span></span>input = numpy.arange(6).reshape((2,3))
the input is:
array([[0, 1, 2],
[3, 4, 5]])
given axis is:
[1, 0]
output = input.transpose(axis)
then the output is:
array([[0, 3],</p>
<blockquote>
<div>[1, 4],
[2, 5]])</div></blockquote>
array([[0, 3],
[1, 4],
[2, 5]])
</pre></div>
</div>
</div></blockquote>
<p>So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)</p>
<table class="docutils field-list" frame="void" rules="none">
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册