From 85e775d590f491f0618e26f589b36a829dd1be5e Mon Sep 17 00:00:00 2001 From: Travis CI Date: Tue, 26 Dec 2017 07:25:32 +0000 Subject: [PATCH] Deploy to GitHub Pages: f66c17b67d1bf5b6753b098f4ded73223f048222 --- develop/doc/api/v2/fluid/layers.html | 31 +++++++++++++++++-------- develop/doc/operators.json | 2 +- develop/doc_cn/api/v2/fluid/layers.html | 31 +++++++++++++++++-------- 3 files changed, 43 insertions(+), 21 deletions(-) diff --git a/develop/doc/api/v2/fluid/layers.html b/develop/doc/api/v2/fluid/layers.html index 4b9adbbce5f..4796a3dbe64 100644 --- a/develop/doc/api/v2/fluid/layers.html +++ b/develop/doc/api/v2/fluid/layers.html @@ -719,18 +719,29 @@ Duplicable: False Optional: False

Transpose Operator.

The input tensor will be permuted according to the axis values given. The op functions is similar to how numpy.transpose works in python.

-

For example: input = numpy.arange(6).reshape((2,3)) -the input is: -array([[0, 1, 2],

+

For example:

-
[3, 4, 5]])
-

given axis is: [1, 0]

-

output = input.transpose(axis) +

input = numpy.arange(6).reshape((2,3))
+
+the input is:
+
+array([[0, 1, 2],
+       [3, 4, 5]])
+
+given axis is:
+
+[1, 0]
+
+output = input.transpose(axis)
+
 then the output is:
-array([[0, 3],

-
-
[1, 4], -[2, 5]])
+ +array([[0, 3], + [1, 4], + [2, 5]]) +
+
+

So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, the output tensor shape will be (N, H, W, C)

diff --git a/develop/doc/operators.json b/develop/doc/operators.json index def3da690ea..af7adb6fe3a 100644 --- a/develop/doc/operators.json +++ b/develop/doc/operators.json @@ -2214,7 +2214,7 @@ } ] },{ "type" : "transpose", - "comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example: input = numpy.arange(6).reshape((2,3))\nthe input is:\narray([[0, 1, 2],\n [3, 4, 5]])\ngiven axis is: [1, 0]\n\noutput = input.transpose(axis)\nthen the output is:\narray([[0, 3],\n [1, 4],\n [2, 5]])\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n", + "comment" : "\nTranspose Operator.\n\nThe input tensor will be permuted according to the axis values given.\nThe op functions is similar to how numpy.transpose works in python.\n\nFor example:\n\n .. code-block:: text\n\n input = numpy.arange(6).reshape((2,3))\n\n the input is:\n\n array([[0, 1, 2],\n [3, 4, 5]])\n\n given axis is:\n\n [1, 0]\n\n output = input.transpose(axis)\n\n then the output is:\n\n array([[0, 3],\n [1, 4],\n [2, 5]])\n\nSo, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},\nthe output tensor shape will be (N, H, W, C)\n\n", "inputs" : [ { "name" : "X", diff --git a/develop/doc_cn/api/v2/fluid/layers.html b/develop/doc_cn/api/v2/fluid/layers.html index 96a1159cfca..acd938cb187 100644 --- a/develop/doc_cn/api/v2/fluid/layers.html +++ b/develop/doc_cn/api/v2/fluid/layers.html @@ -732,18 +732,29 @@ Duplicable: False Optional: False

Transpose Operator.

The input tensor will be permuted according to the axis values given. The op functions is similar to how numpy.transpose works in python.

-

For example: input = numpy.arange(6).reshape((2,3)) -the input is: -array([[0, 1, 2],

+

For example:

-
[3, 4, 5]])
-

given axis is: [1, 0]

-

output = input.transpose(axis) +

input = numpy.arange(6).reshape((2,3))
+
+the input is:
+
+array([[0, 1, 2],
+       [3, 4, 5]])
+
+given axis is:
+
+[1, 0]
+
+output = input.transpose(axis)
+
 then the output is:
-array([[0, 3],

-
-
[1, 4], -[2, 5]])
+ +array([[0, 3], + [1, 4], + [2, 5]]) +
+
+

So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, the output tensor shape will be (N, H, W, C)

-- GitLab