Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
85e6906f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
85e6906f
编写于
11月 28, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the doc of layers.py
上级
d4c2f2f2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
12 addition
and
12 deletion
+12
-12
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+12
-12
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
85e6906f
...
...
@@ -2986,7 +2986,7 @@ def spp_layer(input,
Reference:
`Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729
`_
<https://arxiv.org/abs/1406.4729>
`_
The example usage is:
...
...
@@ -3088,7 +3088,7 @@ def img_cmrnorm_layer(input,
Reference:
`ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
`_
<http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>
`_
The example usage is:
...
...
@@ -3156,7 +3156,7 @@ def batch_norm_layer(input,
Reference:
`Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift
http://arxiv.org/abs/1502.03167
`_
<http://arxiv.org/abs/1502.03167>
`_
The example usage is:
...
...
@@ -5414,9 +5414,9 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
Reference:
`Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
`_
<http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf>
`_
`Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
`_
<https://arxiv.org/pdf/1312.6082v4.pdf>
`_
.. math::
y_{si+j} = \max_k x_{gsi + sk + j}
...
...
@@ -5483,7 +5483,7 @@ def ctc_layer(input,
Reference:
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
<http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>
`_
Note:
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
...
...
@@ -5557,7 +5557,7 @@ def warp_ctc_layer(input,
Reference:
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
<http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>
`_
Note:
- Let num_classes represents the category number. Considering the 'blank'
...
...
@@ -5778,7 +5778,7 @@ def nce_layer(input,
Reference:
`A fast and simple algorithm for training neural probabilistic language
models.
https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
`_
models.
<https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf>
`_
The example usage is:
...
...
@@ -5894,7 +5894,7 @@ def rank_cost(left,
Reference:
`Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
`_
<http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf>
`_
.. math::
...
...
@@ -6430,7 +6430,7 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Reference:
`Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf
`_
<https://arxiv.org/pdf/1504.08083v2.pdf>
`_
The example usage is:
...
...
@@ -6637,7 +6637,7 @@ def prelu_layer(input,
Reference:
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification
http://arxiv.org/pdf/1502.01852v1.pdf
`_
ImageNet Classification
<http://arxiv.org/pdf/1502.01852v1.pdf>
`_
.. math::
z_i &
\\
quad if
\\
quad z_i > 0
\\\\
...
...
@@ -6734,7 +6734,7 @@ def gated_unit_layer(input,
Reference:
`Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
`_
<https://arxiv.org/abs/1612.08083>
`_
.. math::
y=
\\
text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录