Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
85c203b1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
85c203b1
编写于
6月 01, 2018
作者:
W
whs
提交者:
GitHub
6月 01, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make bilinear_interp_op support attrs from input. (#11041)
* Make bilinear_interp_op support attrs from input. * Fix python api.
上级
bfecb572
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
111 addition
and
15 deletion
+111
-15
paddle/fluid/operators/bilinear_interp_op.cc
paddle/fluid/operators/bilinear_interp_op.cc
+23
-0
paddle/fluid/operators/bilinear_interp_op.cu
paddle/fluid/operators/bilinear_interp_op.cu
+23
-2
paddle/fluid/operators/bilinear_interp_op.h
paddle/fluid/operators/bilinear_interp_op.h
+18
-4
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+13
-6
python/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
...n/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
+34
-3
未找到文件。
paddle/fluid/operators/bilinear_interp_op.cc
浏览文件 @
85c203b1
...
@@ -34,9 +34,22 @@ class BilinearInterpOp : public framework::OperatorWithKernel {
...
@@ -34,9 +34,22 @@ class BilinearInterpOp : public framework::OperatorWithKernel {
int
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
int
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"X's dimension must be 4"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"X's dimension must be 4"
);
if
(
ctx
->
HasInput
(
"OutSize"
))
{
auto
out_size_dim
=
ctx
->
GetInputDim
(
"OutSize"
);
PADDLE_ENFORCE_EQ
(
out_size_dim
.
size
(),
1
,
"OutSize's dimension size must be 1"
);
PADDLE_ENFORCE_EQ
(
out_size_dim
[
0
],
2
,
"OutSize's dim[0] must be 2"
);
}
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
],
dim_x
[
1
],
out_h
,
out_w
});
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
],
dim_x
[
1
],
out_h
,
out_w
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
dim_out
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
dim_out
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
};
class
BilinearInterpOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
BilinearInterpOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
@@ -45,6 +58,10 @@ class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -45,6 +58,10 @@ class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
AddInput
(
"X"
,
"(Tensor) The input tensor of bilinear interpolation, "
"(Tensor) The input tensor of bilinear interpolation, "
"This is a 4-D tensor with shape of (N x C x h x w)"
);
"This is a 4-D tensor with shape of (N x C x h x w)"
);
AddInput
(
"OutSize"
,
"(Tensor) This is a 1-D tensor with two number. "
"The first number is height and the second number is width."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor) The dimension of output is (N x C x out_h x out_w]"
);
"(Tensor) The dimension of output is (N x C x out_h x out_w]"
);
...
@@ -78,6 +95,12 @@ class BilinearInterpOpGrad : public framework::OperatorWithKernel {
...
@@ -78,6 +95,12 @@ class BilinearInterpOpGrad : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dim_x
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dim_x
);
}
}
}
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/bilinear_interp_op.cu
浏览文件 @
85c203b1
...
@@ -102,10 +102,21 @@ class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -102,10 +102,21 @@ class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> {
auto
*
input_t
=
ctx
.
Input
<
Tensor
>
(
"X"
);
// float tensor
auto
*
input_t
=
ctx
.
Input
<
Tensor
>
(
"X"
);
// float tensor
auto
*
output_t
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
// float tensor
auto
*
output_t
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
// float tensor
auto
*
input
=
input_t
->
data
<
T
>
();
auto
*
input
=
input_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
auto
out_dims
=
output_t
->
dims
();
auto
out_size_t
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size_t
!=
nullptr
)
{
Tensor
sizes
;
framework
::
TensorCopy
(
*
out_size_t
,
platform
::
CPUPlace
(),
&
sizes
);
auto
size_data
=
sizes
.
data
<
int
>
();
out_h
=
size_data
[
0
];
out_w
=
size_data
[
1
];
}
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
{
out_dims
[
0
],
out_dims
[
1
],
out_h
,
out_w
},
ctx
.
GetPlace
());
int
batch_size
=
input_t
->
dims
()[
0
];
int
batch_size
=
input_t
->
dims
()[
0
];
int
channels
=
input_t
->
dims
()[
1
];
int
channels
=
input_t
->
dims
()[
1
];
int
in_h
=
input_t
->
dims
()[
2
];
int
in_h
=
input_t
->
dims
()[
2
];
...
@@ -139,8 +150,8 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -139,8 +150,8 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_input_t
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_input_t
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_output_t
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_output_t
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_input
=
d_input_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_output
=
d_output_t
->
data
<
T
>
();
auto
*
d_output
=
d_output_t
->
data
<
T
>
();
auto
*
d_input
=
d_input_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
device_ctx
=
auto
&
device_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
...
@@ -149,6 +160,16 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -149,6 +160,16 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
auto
out_size_t
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size_t
!=
nullptr
)
{
Tensor
sizes
;
framework
::
TensorCopy
(
*
out_size_t
,
platform
::
CPUPlace
(),
&
sizes
);
auto
size_data
=
sizes
.
data
<
int
>
();
out_h
=
size_data
[
0
];
out_w
=
size_data
[
1
];
}
int
batch_size
=
d_input_t
->
dims
()[
0
];
int
batch_size
=
d_input_t
->
dims
()[
0
];
int
channels
=
d_input_t
->
dims
()[
1
];
int
channels
=
d_input_t
->
dims
()[
1
];
int
in_h
=
d_input_t
->
dims
()[
2
];
int
in_h
=
d_input_t
->
dims
()[
2
];
...
...
paddle/fluid/operators/bilinear_interp_op.h
浏览文件 @
85c203b1
...
@@ -24,11 +24,18 @@ class BilinearInterpKernel : public framework::OpKernel<T> {
...
@@ -24,11 +24,18 @@ class BilinearInterpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input_t
=
ctx
.
Input
<
Tensor
>
(
"X"
);
// float tensor
auto
*
input_t
=
ctx
.
Input
<
Tensor
>
(
"X"
);
// float tensor
auto
*
output_t
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
// float tensor
auto
*
output_t
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
// float tensor
auto
out_dims
=
output_t
->
dims
();
auto
*
input
=
input_t
->
data
<
T
>
();
auto
*
input
=
input_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
auto
out_size_t
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size_t
!=
nullptr
)
{
auto
out_size_data
=
out_size_t
->
data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
{
out_dims
[
0
],
out_dims
[
1
],
out_h
,
out_w
},
ctx
.
GetPlace
());
int
batch_size
=
input_t
->
dims
()[
0
];
int
batch_size
=
input_t
->
dims
()[
0
];
int
channels
=
input_t
->
dims
()[
1
];
int
channels
=
input_t
->
dims
()[
1
];
int
in_h
=
input_t
->
dims
()[
2
];
int
in_h
=
input_t
->
dims
()[
2
];
...
@@ -83,9 +90,8 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
...
@@ -83,9 +90,8 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_input_t
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_input_t
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_output_t
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_output_t
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_input
=
d_input_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_output
=
d_output_t
->
data
<
T
>
();
auto
*
d_output
=
d_output_t
->
data
<
T
>
();
auto
*
d_input
=
d_input_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
device_ctx
=
auto
&
device_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
zero
;
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
zero
;
...
@@ -93,6 +99,14 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
...
@@ -93,6 +99,14 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
auto
out_size_t
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size_t
!=
nullptr
)
{
auto
out_size_data
=
out_size_t
->
data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
int
batch_size
=
d_input_t
->
dims
()[
0
];
int
batch_size
=
d_input_t
->
dims
()[
0
];
int
channels
=
d_input_t
->
dims
()[
1
];
int
channels
=
d_input_t
->
dims
()[
1
];
int
in_h
=
d_input_t
->
dims
()[
2
];
int
in_h
=
d_input_t
->
dims
()[
2
];
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
85c203b1
...
@@ -3944,7 +3944,7 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
...
@@ -3944,7 +3944,7 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
input (Variable): The input tensor of bilinear interpolation,
input (Variable): The input tensor of bilinear interpolation,
This is a 4-D tensor of the shape
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
(num_batches, channels, in_h, in_w).
out_shape(list|tuple|None): Output shape of bilinear interpolation
out_shape(list|tuple|
Variable|
None): Output shape of bilinear interpolation
layer, the shape is (out_h, out_w).
layer, the shape is (out_h, out_w).
Default: None
Default: None
scale(int|None): The multiplier for the input height or width.
scale(int|None): The multiplier for the input height or width.
...
@@ -3971,13 +3971,20 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
...
@@ -3971,13 +3971,20 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
def
_is_list_or_turple_
(
data
):
def
_is_list_or_turple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
out_h
=
0
out_w
=
0
inputs
=
{
"X"
:
input
}
if
out_shape
is
not
None
:
if
out_shape
is
not
None
:
if
not
(
_is_list_or_turple_
(
out_shape
)
and
len
(
out_shape
)
==
2
):
if
not
(
_is_list_or_turple_
(
out_shape
)
and
len
(
out_shape
)
==
2
)
and
(
out_shape
is
not
Variable
):
raise
ValueError
(
'out_shape should be a list or tuple '
,
raise
ValueError
(
'out_shape should be a list or tuple '
,
'with length 2, (out_h, out_w).'
)
'with length 2, (out_h, out_w).'
)
out_shape
=
list
(
map
(
int
,
out_shape
))
if
_is_list_or_turple_
(
out_shape
):
out_h
=
out_shape
[
0
]
out_shape
=
list
(
map
(
int
,
out_shape
))
out_w
=
out_shape
[
1
]
out_h
=
out_shape
[
0
]
out_w
=
out_shape
[
1
]
else
:
inputs
[
'OutSize'
]
=
out_shape
else
:
else
:
out_h
=
int
(
input
.
shape
[
2
]
*
scale
)
out_h
=
int
(
input
.
shape
[
2
]
*
scale
)
out_w
=
int
(
input
.
shape
[
3
]
*
scale
)
out_w
=
int
(
input
.
shape
[
3
]
*
scale
)
...
@@ -3985,7 +3992,7 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
...
@@ -3985,7 +3992,7 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
out
=
helper
.
create_tmp_variable
(
dtype
)
out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"bilinear_interp"
,
type
=
"bilinear_interp"
,
inputs
=
{
"X"
:
input
}
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"out_h"
:
out_h
,
attrs
=
{
"out_h"
:
out_h
,
"out_w"
:
out_w
})
"out_w"
:
out_w
})
...
...
python/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
浏览文件 @
85c203b1
...
@@ -17,7 +17,10 @@ import numpy as np
...
@@ -17,7 +17,10 @@ import numpy as np
from
op_test
import
OpTest
from
op_test
import
OpTest
def
bilinear_interp_np
(
input
,
out_h
,
out_w
):
def
bilinear_interp_np
(
input
,
out_h
,
out_w
,
out_size
):
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
batch_size
,
channel
,
in_h
,
in_w
=
input
.
shape
batch_size
,
channel
,
in_h
,
in_w
=
input
.
shape
if
out_h
>
1
:
if
out_h
>
1
:
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
...
@@ -49,12 +52,15 @@ def bilinear_interp_np(input, out_h, out_w):
...
@@ -49,12 +52,15 @@ def bilinear_interp_np(input, out_h, out_w):
class
TestBilinearInterpOp
(
OpTest
):
class
TestBilinearInterpOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
init_test_case
()
self
.
init_test_case
()
self
.
op_type
=
"bilinear_interp"
self
.
op_type
=
"bilinear_interp"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
)
self
.
inputs
=
{
'X'
:
input_np
}
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
}
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
}
self
.
outputs
=
{
'Out'
:
output_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
...
@@ -68,6 +74,7 @@ class TestBilinearInterpOp(OpTest):
...
@@ -68,6 +74,7 @@ class TestBilinearInterpOp(OpTest):
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
out_h
=
2
self
.
out_h
=
2
self
.
out_w
=
2
self
.
out_w
=
2
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
class
TestCase1
(
TestBilinearInterpOp
):
class
TestCase1
(
TestBilinearInterpOp
):
...
@@ -91,5 +98,29 @@ class TestCase3(TestBilinearInterpOp):
...
@@ -91,5 +98,29 @@ class TestCase3(TestBilinearInterpOp):
self
.
out_w
=
128
self
.
out_w
=
128
class
TestCase4
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
class
TestCase5
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
class
TestCase6
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录