未验证 提交 85642a0d 编写于 作者: H huangxu96 提交者: GitHub

Class for processing program (#33439)

This PR creates a class to process the program at the C++ level. Currently, this class has one class method:
GetInputsOutputsInBlock()
上级 62840afa
......@@ -203,6 +203,10 @@ cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator
cc_library(op_call_stack SRCS op_call_stack.cc DEPS op_proto_maker enforce)
cc_test(op_call_stack_test SRCS op_call_stack_test.cc DEPS op_call_stack)
cc_library(program_processing SRCS program_processing.cc DEPS framework_proto)
cc_test(program_processing_test SRCS program_processing_test.cc DEPS proto_desc program_processing)
if(WITH_GPU)
nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
elseif(WITH_ROCM)
......
......@@ -122,6 +122,16 @@ class OpDesc {
const VariableNameMap &Outputs() const { return outputs_; }
VariableNameMap *MutableInputs() {
this->need_update_ = true;
return &this->inputs_;
}
VariableNameMap *MutableOutputs() {
this->need_update_ = true;
return &this->outputs_;
}
AttributeMap *MutableAttrMap() {
this->need_update_ = true;
return &this->attrs_;
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/program_processing.h"
#include "paddle/fluid/framework/block_desc.h"
namespace paddle {
namespace framework {
void ProgramProcessor::GetInputsOutputsInBlock(
const BlockDesc &current_block, std::set<std::string> *inner_inputs,
std::set<std::string> *inner_outputs) {
/* Find inputs and outputs in current control flow block.
:param current_block: Current control flow block.
:param inner_inputs: Input var vector of ops in current block.
:param inner_outputs: Output var vector of ops in current block. */
// Step1: update inner_inputs and inner_outputs
// NOTE: Here assumes that all variables are input or output of Ops,
for (OpDesc *op : current_block.AllOps()) {
for (auto iname : op->InputNames()) {
for (auto in_var_name : op->Input(iname)) {
VLOG(3) << "insert inner_inputs_name:" << in_var_name;
inner_inputs->insert(in_var_name);
}
}
for (auto oname : op->OutputNames()) {
for (auto out_var_name : op->Output(oname)) {
VLOG(3) << "insert out_var_name:" << out_var_name;
inner_outputs->insert(out_var_name);
}
}
}
// Step2: Remove variable created in current control flow block.
BlockDesc *parent_block = current_block.ParentBlock();
if (parent_block) {
for (auto iter = inner_inputs->begin(); iter != inner_inputs->end();) {
const std::string &in_var_name = *iter;
if (current_block.HasVar(in_var_name)) {
VLOG(3) << "remove inner intput var:" << in_var_name;
iter = inner_inputs->erase(iter);
} else {
++iter;
}
}
for (auto iter = inner_outputs->begin(); iter != inner_outputs->end();) {
const std::string &out_var_name = *iter;
if (current_block.HasVar(out_var_name)) {
VLOG(3) << "remove inner output var:" << out_var_name;
iter = inner_outputs->erase(iter);
} else {
++iter;
}
}
}
}
void ProgramProcessor::AddDepToBlockOp(const BlockDesc &block) {
VLOG(3) << "Op size:" << block.AllOps().size();
for (OpDesc *op : block.AllOps()) {
if (op->HasAttr("sub_block")) {
auto op_type = op->Type();
BlockDesc *sub_block =
BOOST_GET_MUTABLE(BlockDesc *, op->GetAttr("sub_block"));
// recursively processing
AddDepToBlockOp(*sub_block);
std::set<std::string> sub_inputs;
std::set<std::string> sub_outputs;
ProgramProcessor::GetInputsOutputsInBlock(*sub_block, &sub_inputs,
&sub_outputs);
VLOG(3) << "sub_inputs.size:" << sub_inputs.size();
VLOG(3) << "sub_outputs.size:" << sub_outputs.size();
auto *op_inputs = op->MutableInputs();
std::vector<std::string> *op_input_var_vec;
VLOG(3) << "op_type:>>>>>>" << op_type;
if (op_type.compare("while") == 0) {
op_input_var_vec = &((*op_inputs)["kX"]);
} else if (op_type.compare("conditional_block") == 0) {
op_input_var_vec = &((*op_inputs)["kInputs"]);
} else {
// Only support while_op and conditinal_block_op now
LOG(WARNING)
<< "Currently, only support while_op and conditinal_block_op.\n";
continue;
}
for (auto sub_input : sub_inputs) {
if (std::find(op_input_var_vec->begin(), op_input_var_vec->end(),
sub_input) == op_input_var_vec->end())
op_input_var_vec->push_back(sub_input);
VLOG(3) << "modified private inputs, inputs.size():"
<< op_input_var_vec->size();
}
auto *op_outputs = op->MutableOutputs();
auto *op_output_var_vec = &((*op_outputs)["kOutputs"]);
for (auto sub_output : sub_outputs) {
if (std::find(op_output_var_vec->begin(), op_output_var_vec->end(),
sub_output) == op_output_var_vec->end())
op_output_var_vec->push_back(sub_output);
VLOG(3) << "modified private outputs, outputs.size():"
<< op_output_var_vec->size();
}
}
}
}
ProgramProcessor::ProgramProcessor() {}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/program_desc.h"
namespace paddle {
namespace framework {
class ProgramDesc;
class ProgramProcessor {
public:
ProgramProcessor();
void GetInputsOutputsInBlock(const BlockDesc &current_block,
std::set<std::string> *inner_inputs,
std::set<std::string> *inner_outputs);
void AddDepToBlockOp(const BlockDesc &block);
};
} // namespace framework
} // namespace paddle
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/program_processing.h"
#include "gtest/gtest-message.h"
#include "gtest/gtest-test-part.h"
#include "gtest/gtest.h"
#include "gtest/gtest_pred_impl.h"
namespace paddle {
namespace framework {
TEST(ProgramDesc, GetInputsOutputsInBlock) {
ProgramDesc program;
auto* global_block = program.MutableBlock(0);
auto* mul_1_x = global_block->Var("Mul_1_X");
mul_1_x->SetType(proto::VarType::LOD_TENSOR);
mul_1_x->SetLoDLevel(0);
mul_1_x->SetDataType(proto::VarType::FP32);
mul_1_x->SetShape({1000, 784});
auto* mul_1_y = global_block->Var("Mul_1_Y");
mul_1_y->SetType(proto::VarType::LOD_TENSOR);
mul_1_y->SetLoDLevel(0);
mul_1_y->SetDataType(proto::VarType::FP32);
mul_1_y->SetShape({784, 100});
auto* mul_1_out = global_block->Var("Mul_1_Out");
mul_1_out->SetType(proto::VarType::LOD_TENSOR);
auto* mul_op_1 = global_block->AppendOp();
mul_op_1->SetType("mul");
mul_op_1->SetInput("X", {mul_1_x->Name()});
mul_op_1->SetInput("Y", {mul_1_y->Name()});
mul_op_1->SetOutput("Y", {mul_1_out->Name()});
// building cond op such as less_than
auto* less_than_op_1 = global_block->AppendOp();
less_than_op_1->SetType("less_than");
auto* less_than_1_x = global_block->Var("Less_than_1_X");
less_than_1_x->SetType(proto::VarType::LOD_TENSOR);
less_than_1_x->SetLoDLevel(0);
less_than_1_x->SetDataType(proto::VarType::FP32);
less_than_1_x->SetShape({1});
auto* less_than_1_y = global_block->Var("Less_than_1_Y");
less_than_1_y->SetType(proto::VarType::LOD_TENSOR);
less_than_1_y->SetLoDLevel(0);
less_than_1_y->SetDataType(proto::VarType::FP32);
less_than_1_y->SetShape({1});
auto* less_than_1_out = global_block->Var("Less_than_1_Out");
less_than_1_out->SetType(proto::VarType::BOOL);
less_than_op_1->SetInput("X", {less_than_1_x->Name()});
less_than_op_1->SetInput("Y", {less_than_1_y->Name()});
less_than_op_1->SetOutput("Out", {less_than_1_out->Name()});
BlockDesc* sub_block = program.AppendBlock(*global_block);
std::vector<BlockDesc*> sub_blocks;
sub_blocks.push_back(sub_block);
BlockDesc* sub_block2 =
program.AppendBlock(*sub_block); // for testing nested case.
sub_blocks.push_back(sub_block2);
// building while op in sub_block
auto* while_op = global_block->AppendOp();
while_op->SetType("while");
while_op->SetAttr("sub_block", sub_blocks[0]);
auto* while_x = global_block->Var("While_X");
while_x->SetType(proto::VarType::LOD_TENSOR);
while_x->SetLoDLevel(0);
while_x->SetDataType(proto::VarType::FP32);
while_x->SetShape({1});
while_op->SetInput("kX", {while_x->Name()});
while_op->SetInput("kCondition", {less_than_1_out->Name()});
auto* while_out = global_block->Var("While_Out");
while_out->SetType(proto::VarType::LOD_TENSOR);
while_out->SetLoDLevel(0);
while_out->SetDataType(proto::VarType::FP32);
while_out->SetShape({1});
auto* steps = global_block->Var("StepScopes");
while_op->SetOutput("kOutputs", {while_out->Name()});
while_op->SetOutput("kStepScopes", {steps->Name()});
auto* mul_2_x = global_block->Var("Mul_2_X");
mul_2_x->SetType(proto::VarType::LOD_TENSOR);
mul_2_x->SetLoDLevel(0);
mul_2_x->SetDataType(proto::VarType::FP32);
mul_2_x->SetShape({1000, 784});
auto* mul_2_y = global_block->Var("Mul_2_Y");
mul_2_y->SetType(proto::VarType::LOD_TENSOR);
mul_2_y->SetLoDLevel(0);
mul_2_y->SetDataType(proto::VarType::FP32);
mul_2_y->SetShape({784, 100});
auto* mul_op_2 = sub_blocks[0]->AppendOp();
mul_op_2->SetType("mul");
mul_op_2->SetInput("X", {mul_2_x->Name()});
mul_op_2->SetInput("Y", {mul_2_y->Name()});
auto* mul_2_out = global_block->Var("Mul_2_Out");
mul_2_out->SetType(proto::VarType::LOD_TENSOR);
mul_op_2->SetOutput("Y", {mul_2_out->Name()});
auto* less_than_op_2 = sub_blocks[0]->AppendOp();
less_than_op_2->SetType("less_than");
auto* less_than_2_x = global_block->Var("Less_than_2_X");
less_than_2_x->SetType(proto::VarType::LOD_TENSOR);
less_than_2_x->SetLoDLevel(0);
less_than_2_x->SetDataType(proto::VarType::FP32);
less_than_2_x->SetShape({1});
auto* less_than_2_y = global_block->Var("Less_than_2_Y");
less_than_2_y->SetType(proto::VarType::LOD_TENSOR);
less_than_2_y->SetLoDLevel(0);
less_than_2_y->SetDataType(proto::VarType::FP32);
less_than_2_y->SetShape({1});
less_than_op_2->SetInput("X", {less_than_2_x->Name()});
less_than_op_2->SetInput("Y", {less_than_2_y->Name()});
auto* less_than_2_out = global_block->Var("Less_than_2_Out");
less_than_2_out->SetType(proto::VarType::BOOL);
less_than_op_2->SetOutput("Out", {less_than_2_out->Name()});
auto* cond_op = sub_blocks[0]->AppendOp();
cond_op->SetType("conditional_block");
cond_op->SetAttr("sub_block", sub_blocks[1]);
auto* cond_x = sub_blocks[0]->Var("Cond_X");
cond_x->SetType(proto::VarType::LOD_TENSOR);
cond_x->SetLoDLevel(0);
cond_x->SetDataType(proto::VarType::FP32);
cond_x->SetShape({1});
cond_op->SetInput("kInputs", {cond_x->Name()});
cond_op->SetInput("kCondition", {less_than_2_out->Name()});
auto* cond_out = sub_blocks[0]->Var("Cond_Out");
cond_out->SetType(proto::VarType::LOD_TENSOR);
cond_out->SetLoDLevel(0);
cond_out->SetDataType(proto::VarType::FP32);
cond_out->SetShape({1});
auto* scope = sub_blocks[0]->Var("Scope");
scope->SetType(proto::VarType::STEP_SCOPES);
cond_op->SetOutput("kOutputs", {cond_out->Name()});
cond_op->SetOutput("kScope", {scope->Name()});
auto* mul_3_x = global_block->Var("Mul_3_X");
mul_3_x->SetType(proto::VarType::LOD_TENSOR);
mul_3_x->SetLoDLevel(0);
mul_3_x->SetDataType(proto::VarType::FP32);
mul_3_x->SetShape({1000, 784});
auto* mul_3_y = global_block->Var("Mul_3_Y");
mul_3_y->SetType(proto::VarType::LOD_TENSOR);
mul_3_y->SetLoDLevel(0);
mul_3_y->SetDataType(proto::VarType::FP32);
mul_3_y->SetShape({784, 100});
auto* mul_3_out = global_block->Var("Mul_3_Out");
mul_3_out->SetType(proto::VarType::LOD_TENSOR);
auto* mul_op_3 = sub_blocks[1]->AppendOp();
mul_op_3->SetType("mul");
mul_op_3->SetInput("X", {mul_3_x->Name()});
mul_op_3->SetInput("Y", {mul_3_y->Name()});
mul_op_3->SetOutput("Y", {mul_3_out->Name()});
ProgramProcessor program_processor;
std::set<std::string> inner_inputs;
std::set<std::string> inner_outputs;
program_processor.GetInputsOutputsInBlock(*sub_blocks[0], &inner_inputs,
&inner_outputs);
VLOG(3) << "inner_inputs().size():" << inner_inputs.size();
VLOG(3) << "inner_outputs().size():" << inner_outputs.size();
ASSERT_EQ(5UL, inner_inputs.size());
ASSERT_EQ(2UL, inner_outputs.size());
// varible "Less_than_2_Out" is the input of cond_op, it also is the output of
// less_than_op.
std::set<std::string> inner_inputs_{"Less_than_2_Out", "Less_than_2_X",
"Less_than_2_Y", "Mul_2_X", "Mul_2_Y"};
std::set<std::string> inner_outputs_{"Less_than_2_Out", "Mul_2_Out"};
ASSERT_EQ(inner_inputs, inner_inputs_);
ASSERT_EQ(inner_outputs, inner_outputs_);
// Test AddDepToBlockOp
VLOG(3) << "Before AddDependency, while op's input kX size:"
<< while_op->Input("kX").size();
VLOG(3) << "Before AddDependency, while op's output kOutPuts size:"
<< while_op->Output("kOutputs").size();
program_processor.AddDepToBlockOp(*global_block);
VLOG(3) << "After AddDependency, while op's input kX size:"
<< while_op->Input("kX").size();
VLOG(3) << "After AddDependency, while op's output kOutPuts size:"
<< while_op->Output("kOutputs").size();
ASSERT_EQ(8UL, while_op->Input("kX").size());
ASSERT_EQ(4UL, while_op->Output("kOutputs").size());
std::vector<std::string> var_input_vec = {
"While_X", "Less_than_2_Out", "Less_than_2_X", "Less_than_2_Y",
"Mul_2_X", "Mul_2_Y", "Mul_3_X", "Mul_3_Y"};
std::vector<std::string> var_output_vec = {"While_Out", "Less_than_2_Out",
"Mul_2_Out", "Mul_3_Out"};
ASSERT_EQ(var_input_vec, while_op->Input("kX"));
ASSERT_EQ(var_output_vec, while_op->Output("kOutputs"));
}
} // namespace framework
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册