提交 855ae59d 编写于 作者: C caoying03

add KmaxSeqScoreLayer implementation.

上级 aa0ca57a
...@@ -257,6 +257,11 @@ seq_concat ...@@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat .. autoclass:: paddle.v2.layer.seq_concat
:noindex: :noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
:noindex:
Reshaping Layers Reshaping Layers
================ ================
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
namespace paddle {
class KmaxSeqScoreLayer : public Layer {
private:
MatrixPtr scores_;
size_t beamSize_;
void kmaxScorePerSeq(const real* score,
real* sortedRes,
const ICpuGpuVectorPtr seqStartPos);
public:
explicit KmaxSeqScoreLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(kmax_seq_score, KmaxSeqScoreLayer);
bool KmaxSeqScoreLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
bool ret = Layer::init(layerMap, parameterMap);
CHECK_EQ(1UL, inputLayers_.size());
beamSize_ = config_.beam_size();
CHECK_GE(beamSize_, 1LU);
setNeedSequenceInfo(false);
return ret;
}
void KmaxSeqScoreLayer::kmaxScorePerSeq(const real* scores,
real* sortedIds,
const ICpuGpuVectorPtr seqStartPos) {
int* starts = seqStartPos->getMutableData(false);
std::vector<real> indices;
for (size_t i = 0; i < seqStartPos->getSize() - 1; ++i) {
int seqLen = starts[i + 1] - starts[i];
int k = std::min(static_cast<int>(beamSize_), seqLen);
indices.resize(seqLen, 0);
std::iota(begin(indices), end(indices), 0.);
std::vector<real> tmpScore(scores + starts[i], scores + starts[i + 1]);
std::partial_sort(
begin(indices),
begin(indices) + k,
end(indices),
[&](size_t a, size_t b) { return tmpScore[a] > tmpScore[b]; });
memcpy(sortedIds + (i * beamSize_), indices.data(), k * sizeof(real));
}
}
void KmaxSeqScoreLayer::forward(PassType passType) {
Layer::forward(passType);
const Argument& input = getInput(0);
const MatrixPtr inputScore = getInputValue(0);
CHECK(input.hasSeq() || input.hasSubseq())
<< "input of " << getName()
<< " must be a sequence or a nested sequence.";
CHECK_EQ(input.value->getWidth(), 1UL)
<< "input of " << getName()
<< " is score over a sequence or a nested sequence, so its width "
<< " must be 1.";
if (useGpu_) {
// this Layer runs only in CPU, if the model is runing on GPU,
// then copy the input to this layer from GPU to CPU.
Matrix::resizeOrCreate(scores_,
inputScore->getHeight(),
1,
false /* trans */,
false /* useGpu */);
scores_->copyFrom(*inputScore);
} else {
scores_ = inputScore;
}
MatrixPtr outputValue = getOutputValue();
Matrix::resizeOrCreate(
outputValue,
input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(),
beamSize_);
outputValue->one();
outputValue->mulScalar(-1.);
kmaxScorePerSeq(scores_->getData(),
output_.value->getData(),
input.hasSeq() ? input.subSequenceStartPositions
: input.sequenceStartPositions);
}
void KmaxSeqScoreLayer::backward(const UpdateCallback& callback) {}
} // namespace paddle
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <algorithm>
#include <string> #include <string>
#include <vector> #include <vector>
#include "ModelConfig.pb.h" #include "ModelConfig.pb.h"
...@@ -30,12 +31,84 @@ DECLARE_bool(use_gpu); ...@@ -30,12 +31,84 @@ DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id); DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed); DECLARE_bool(thread_local_rand_use_global_seed);
vector<int> randSampling(int range, int n) {
srand(1);
CHECK_GE(range, n);
vector<int> num(range);
iota(begin(num), end(num), 0);
if (range == n) return num;
random_shuffle(begin(num), end(num));
num.resize(n);
return num;
}
void genRandomSeqInfo(vector<int>& seqStartPosition,
vector<int>& subSeqStartPosition) {
const int maxSeqNum = 5;
// generate random start position information
int seqNum = 1 + (rand() % maxSeqNum);
seqStartPosition.resize(seqNum + 1, 0);
subSeqStartPosition.resize(1, 0);
for (int i = 0; i < seqNum; ++i) {
int subSeqLen = 1 + (rand() % maxSeqNum);
for (int j = 0; j < subSeqLen; ++j)
subSeqStartPosition.push_back(subSeqStartPosition.back() + subSeqLen);
seqStartPosition[i + 1] = subSeqStartPosition.back();
}
}
void genRandomGroundTruth(real* values,
vector<vector<int>>& groundTruth,
vector<int>& seqStartPosition,
vector<int>& subSeqStartPosition,
bool useSubseqInfo,
size_t beamSize) {
auto genData = [&](real* values, vector<int>& startPos, size_t beamSize) {
groundTruth.resize(startPos.size() - 1, vector<int>(beamSize, -1));
for (size_t i = 0; i < startPos.size() - 1; ++i) {
int seqLen = startPos[i + 1] - startPos[i];
vector<int> pos =
randSampling(seqLen, min(static_cast<int>(beamSize), seqLen));
for (size_t j = 0; j < pos.size(); ++j) {
groundTruth[i][j] = pos[j];
values[subSeqStartPosition[i] + pos[j]] = 1.;
}
}
};
if (useSubseqInfo)
genData(values, subSeqStartPosition, beamSize);
else
genData(values, seqStartPosition, beamSize);
}
// Test that the batchNormLayer can be followed by a ConvLayer // Test that the batchNormLayer can be followed by a ConvLayer
TEST(Layer, kmaxSeqScoreLayer) { TEST(Layer, kmaxSeqScoreLayer) {
for (auto hasSubseq : {true, false}) { const size_t beamSize = 5;
for (auto useGpu : {true, false}) {
vector<int> seqStartPosition;
vector<int> subSeqStartPosition;
genRandomSeqInfo(seqStartPosition, subSeqStartPosition);
MatrixPtr inValue =
Matrix::create(subSeqStartPosition.back(), 1, false, false);
inValue->randomizeUniform();
for (auto hasSubseq : {false, true}) {
vector<vector<int>> groundTruth;
genRandomGroundTruth(inValue->getData(),
groundTruth,
seqStartPosition,
subSeqStartPosition,
hasSubseq,
beamSize);
for (auto useGpu : {false, true}) {
TestConfig config; TestConfig config;
config.layerConfig.set_type("kmax_seq_score"); config.layerConfig.set_type("kmax_seq_score");
config.layerConfig.set_beam_size(beamSize);
config.inputDefs.push_back( config.inputDefs.push_back(
{hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA, {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
"layer_0", "layer_0",
......
...@@ -6112,7 +6112,8 @@ def clip_layer(input, min, max, name=None): ...@@ -6112,7 +6112,8 @@ def clip_layer(input, min, max, name=None):
:type min: double :type min: double
:param max: The upper threshold for clipping. :param max: The upper threshold for clipping.
:type max: double :type max: double
:return: LayerOutput :return: LayerOutput object.
:rtype: LayerOutput
""" """
Layer( Layer(
name=name, name=name,
...@@ -6127,8 +6128,27 @@ def clip_layer(input, min, max, name=None): ...@@ -6127,8 +6128,27 @@ def clip_layer(input, min, max, name=None):
@wrap_name_default() @wrap_name_default()
@layer_support() @layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1): def kmax_sequence_score_layer(input, name=None, beam_size=1):
"""
This layer accepts one input which is scores over a sequence or a nested
sequence, and returns indices of beam_size sequences with highest scores.
.. code-block:: python
kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)
:param name: The Layer Name.
:type name: basestring
:param input: The input layer. It is scores over a sequence or a nested
sequence and its size must be 1.
:type input: LayerOutput.
:param beam_size: squence indices with top beam_size scores are returned.
:type beam_size: double
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer " assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
"accept only one input.") "accepts only one input.")
assert input.size == 1, ( assert input.size == 1, (
"input of kmax_sequence_score_layer is a score" "input of kmax_sequence_score_layer is a score"
"over a sequence or a nested sequence, so its width must be 1.") "over a sequence or a nested sequence, so its width must be 1.")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册