Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8525bc63
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8525bc63
编写于
4月 11, 2022
作者:
L
lilong12
提交者:
GitHub
4月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add send/recv to/from switch module for PrcoessGroupHeter (#41285) (#41502)
上级
f2a8d053
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
264 addition
and
51 deletion
+264
-51
cmake/flags.cmake
cmake/flags.cmake
+4
-0
paddle/fluid/distributed/collective/CMakeLists.txt
paddle/fluid/distributed/collective/CMakeLists.txt
+2
-2
paddle/fluid/distributed/collective/ProcessGroup.cc
paddle/fluid/distributed/collective/ProcessGroup.cc
+2
-2
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+11
-7
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
+0
-6
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
+156
-32
paddle/fluid/distributed/collective/ProcessGroupHeter.h
paddle/fluid/distributed/collective/ProcessGroupHeter.h
+6
-1
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+37
-0
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+4
-0
paddle/fluid/operators/collective/c_broadcast_op.cu.cc
paddle/fluid/operators/collective/c_broadcast_op.cu.cc
+1
-1
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+6
-0
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+35
-0
未找到文件。
cmake/flags.cmake
浏览文件 @
8525bc63
...
...
@@ -244,3 +244,7 @@ if(WITH_ROCM)
string
(
REPLACE
"-Werror"
"-Wno-error"
CMAKE_C_FLAGS
${
CMAKE_C_FLAGS
}
)
endif
()
if
(
WITH_PSCORE OR WITH_PSLIB
)
string
(
REPLACE
"-Wnon-virtual-dtor"
"-Wno-non-virtual-dtor"
CMAKE_CXX_FLAGS
${
CMAKE_CXX_FLAGS
}
)
string
(
REPLACE
"-Wnon-virtual-dtor"
"-Wno-non-virtual-dtor"
CMAKE_C_FLAGS
${
CMAKE_C_FLAGS
}
)
endif
()
paddle/fluid/distributed/collective/CMakeLists.txt
浏览文件 @
8525bc63
...
...
@@ -7,14 +7,14 @@ endif()
if
(
WITH_NCCL
)
cc_library
(
processgroup_nccl SRCS ProcessGroupNCCL.cc NCCLTools.cc Common.cc DEPS place cuda_stream enforce collective_helper device_context phi phi_api eager_api
)
if
(
WITH_DISTRIBUTE
)
if
(
WITH_DISTRIBUTE
AND WITH_PSCORE
)
cc_library
(
processgroup_heter SRCS ProcessGroupHeter.cc NCCLTools.cc Common.cc DEPS place cuda_stream enforce collective_helper device_context phi phi_api eager_api
)
endif
()
endif
()
if
(
WITH_ASCEND_CL
)
cc_library
(
processgroup_hccl SRCS ProcessGroupHCCL.cc HCCLTools.cc Common.cc DEPS place npu_stream enforce collective_helper device_context phi phi_api eager_api
)
if
(
WITH_DISTRIBUTE
)
if
(
WITH_DISTRIBUTE
AND WITH_PSCORE
)
cc_library
(
processgroup_heter SRCS ProcessGroupHeter.cc HCCLTools.cc Common.cc DEPS place npu_stream enforce collective_helper device_context phi phi_api eager_api
)
endif
()
endif
()
paddle/fluid/distributed/collective/ProcessGroup.cc
浏览文件 @
8525bc63
...
...
@@ -35,10 +35,10 @@ bool ProcessGroup::Task::Wait(std::chrono::milliseconds timeout) {
void
ProcessGroup
::
Task
::
Synchronize
()
{}
ProcessGroup
::
ProcessGroup
(
int
rank
,
int
size
,
int
gid
)
:
rank_
(
rank
),
size_
(
size
)
{
:
rank_
(
rank
),
size_
(
size
)
,
gid_
(
gid
)
{
if
(
gid
!=
IGNORE_ID
)
{
auto
map
=
ProcessGroupMapFromGid
::
getInstance
();
map
->
insert
(
gid
,
this
);
map
->
insert
(
gid
_
,
this
);
}
}
...
...
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
8525bc63
...
...
@@ -93,8 +93,8 @@ class ProcessGroup {
}
virtual
void
Broadcast
(
const
phi
::
DenseTensor
*
in
,
phi
::
DenseTensor
*
out
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support broadcast for static"
,
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"ProcessGroup%s does not support broadcast for static
mode runtime
"
,
GetBackendName
()));
}
...
...
@@ -148,6 +148,7 @@ class ProcessGroup {
protected:
const
int
rank_
;
const
int
size_
;
const
int
gid_
;
};
class
ProcessGroupMapFromGid
{
...
...
@@ -158,17 +159,20 @@ class ProcessGroupMapFromGid {
}
void
insert
(
int
gid
,
ProcessGroup
*
pg
)
{
// TODO(sandyhouse): address ut and uncomment the following codes
// PADDLE_ENFORCE_EQ(has(gid), false,
// platform::errors::PreconditionNotMet(
// "The process group with id %d does exist.", gid));
// platform::errors::PreconditionNotMet(
// "The process group with id %d doesnot exist.",
// gid));
map_
[
gid
]
=
pg
;
}
ProcessGroup
*
get
(
int
gid
)
{
// TODO(sandyhouse): address ut and uncomment the following codes
// PADDLE_ENFORCE_EQ(has(gid), true,
// platform::errors::PreconditionNotMet(
// "The process group with id %d doesnot exist.",
// gid));
//
platform::errors::PreconditionNotMet(
//
"The process group with id %d doesnot exist.",
//
gid));
return
map_
.
find
(
gid
)
->
second
;
}
...
...
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
浏览文件 @
8525bc63
...
...
@@ -30,12 +30,6 @@ constexpr int64_t kWaitBlockTImeout = 10;
namespace
paddle
{
namespace
distributed
{
// bool CheckTensorsInNPUPlace(const std::vector<Tensor>& tensors) {
// return std::all_of(tensors.cbegin(), tensors.cend(), [&](const Tensor& t) {
// return t.place() == platform::DeviceType::NPU;
// });
// }
void
SyncDefaultStream
(
const
std
::
vector
<
Place
>&
places
,
std
::
vector
<
NPUEventManager
>&
hcclEvents
,
// NOLINT
...
...
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
浏览文件 @
8525bc63
...
...
@@ -56,7 +56,8 @@ ProcessGroupHeter::ProcessGroupHeter(const std::shared_ptr<Store>& store,
local_size_
(
local_size
),
gloo_rank_
(
gloo_rank
),
gloo_size_
(
gloo_size
),
with_switch_
(
with_switch
)
{
with_switch_
(
with_switch
),
switch_endpoint_
(
switch_endpoint
)
{
#if defined(PADDLE_WITH_NCCL)
inner_pg_
=
std
::
make_shared
<
ProcessGroupNCCL
>
(
store
,
local_rank
,
local_size
,
IGNORE_ID
);
...
...
@@ -64,14 +65,10 @@ ProcessGroupHeter::ProcessGroupHeter(const std::shared_ptr<Store>& store,
inner_pg_
=
std
::
make_shared
<
ProcessGroupHCCL
>
(
store
,
local_rank
,
local_size
,
IGNORE_ID
);
#else
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"ProcessGroupHeter only supports NCCL and HCCL now."
);
#endif
if
(
with_switch_
)
{
// TODO(sandyhouse) starts a client to connect the cloud switch module
// std::shared_ptr<HeterClient> client_ =
// HeterClient::GetInstance({switch_endpoint}, {}, 0);
}
else
if
(
local_rank_
==
0
)
{
if
(
local_rank_
==
0
&&
!
with_switch_
)
{
auto
opts
=
ProcessGroupGloo
::
GlooOptions
::
create
();
opts
->
device
=
ProcessGroupGloo
::
createDefaultDevice
();
inter_pg_
=
std
::
make_shared
<
ProcessGroupGloo
>
(
store
,
gloo_rank_
,
...
...
@@ -79,6 +76,15 @@ ProcessGroupHeter::ProcessGroupHeter(const std::shared_ptr<Store>& store,
}
}
template
<
typename
T
>
static
void
_do_add
(
T
*
dst
,
T
*
src
,
size_t
size
)
{
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
*
dst
+=
*
src
;
dst
++
;
src
++
;
}
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
opts
)
{
#if defined(PADDLE_WITH_NCCL)
...
...
@@ -93,33 +99,92 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupHeter::AllReduce(
// Step2: copy tensors to CPU
if
(
local_rank_
==
0
)
{
std
::
vector
<
Tensor
>
cpu_tensors
(
tensors
.
size
());
std
::
vector
<
Tensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
auto
dense_gpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
i
].
impl
());
dense_cpu_tensor
->
Resize
(
tensors
[
i
].
dims
());
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
dense_gpu_tensor
->
dtype
(),
dense_gpu_tensor
->
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor
->
ResizeAndAllocate
(
dense_gpu_tensor
->
dims
());
cpu_tensors
[
i
]
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor
);
framework
::
TensorCopySync
(
*
dense_gpu_tensor
,
platform
::
CPUPlace
(),
dense_cpu_tensor
.
get
());
}
// Step3: do inter cluster allreduce
if
(
with_switch_
)
{
// TODO(sandyhouse) send to and recv from switch, and do add
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
0
].
impl
());
std
::
vector
<
int
>
send_size
;
send_size
.
push_back
(
dense_cpu_tensor
->
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
dense_cpu_tensor
->
name
()},
send_size
,
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
dense_cpu_tensor
->
dtype
(),
dense_cpu_tensor
->
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor2
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor2
->
ResizeAndAllocate
(
dense_cpu_tensor
->
dims
());
Tensor
cpu_tensor_temp
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor2
);
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
->
name
()},
dense_cpu_tensor2
->
data
(),
dense_cpu_tensor2
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor2
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Recv from the switch module error."
));
switch
(
dense_cpu_tensor
->
dtype
())
{
case
DataType
::
FLOAT32
:
_do_add
<
float
>
(
reinterpret_cast
<
float
*>
(
dense_cpu_tensor
->
data
()),
reinterpret_cast
<
float
*>
(
dense_cpu_tensor2
->
data
()),
dense_cpu_tensor
->
numel
());
break
;
case
DataType
::
FLOAT64
:
_do_add
<
double
>
(
reinterpret_cast
<
double
*>
(
dense_cpu_tensor
->
data
()),
reinterpret_cast
<
double
*>
(
dense_cpu_tensor2
->
data
()),
dense_cpu_tensor
->
numel
());
break
;
case
DataType
::
INT32
:
_do_add
<
int
>
(
reinterpret_cast
<
int
*>
(
dense_cpu_tensor
->
data
()),
reinterpret_cast
<
int
*>
(
dense_cpu_tensor2
->
data
()),
dense_cpu_tensor
->
numel
());
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Unsupported data type (%s) to do add."
,
framework
::
DataType2String
(
dense_cpu_tensor
->
dtype
())));
}
}
}
else
{
auto
gloo_task
=
inter_pg_
->
AllReduce
(
cpu_tensors
,
opts
);
gloo_task
->
Wait
();
}
// Step4: copy cpu tensors to gpu
// TODO(sandyhouse)
// copy cpu tensors to gpu
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
auto
dense_gpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
i
].
impl
());
// framework::TensorCopySync(*dense_cpu_tensor, tensors[i].place(),
// dense_gpu_tensor.get());
framework
::
TensorCopySync
(
*
dense_cpu_tensor
,
dense_cpu_tensor
->
place
(),
dense_gpu_tensor
.
get
());
}
...
...
@@ -147,18 +212,57 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupHeter::Broadcast(
inner_pg_
->
Broadcast
(
tensors
,
b_opts
);
if
(
local_rank_
==
0
)
{
std
::
vector
<
Tensor
>
cpu_tensors
(
tensors
.
size
());
std
::
vector
<
Tensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
i
++
)
{
auto
dense_gpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
i
].
impl
());
dense_cpu_tensor
->
Resize
(
tensors
[
i
].
dims
());
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
dense_gpu_tensor
->
dtype
(),
dense_gpu_tensor
->
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor
->
ResizeAndAllocate
(
dense_gpu_tensor
->
dims
());
cpu_tensors
[
i
]
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor
);
framework
::
TensorCopySync
(
*
dense_gpu_tensor
,
platform
::
CPUPlace
(),
dense_cpu_tensor
.
get
());
}
if
(
with_switch_
)
{
// TODO(sandyhouse) send to and recv
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
0
].
impl
());
if
(
gloo_rank_
==
0
)
{
std
::
vector
<
int
>
send_size
;
send_size
.
push_back
(
dense_cpu_tensor
->
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
dense_cpu_tensor
->
name
()},
send_size
,
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
}
else
{
int
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
->
name
()},
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Receive from the switch module error."
));
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
->
name
()},
dense_cpu_tensor
->
data
(),
dense_cpu_tensor
->
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Receive from the switch module error."
));
}
}
}
else
{
auto
gloo_task
=
inter_pg_
->
Broadcast
(
cpu_tensors
,
opts
);
gloo_task
->
Wait
();
...
...
@@ -168,8 +272,6 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupHeter::Broadcast(
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensors
[
i
].
impl
());
// framework::TensorCopySync(*dense_cpu_tensor, tensors[i].place(),
// dense_gpu_tensor.get());
framework
::
TensorCopySync
(
*
dense_cpu_tensor
,
dense_cpu_tensor
->
place
(),
dense_gpu_tensor
.
get
());
}
...
...
@@ -185,22 +287,44 @@ void ProcessGroupHeter::Broadcast(const phi::DenseTensor* in,
inner_pg_
->
Broadcast
(
in
,
out
);
if
(
local_rank_
==
0
)
{
Tensor
cpu_tensor
;
auto
dense_cpu_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
cpu_tensor
.
impl
());
dense_cpu_tensor
->
Resize
(
in
->
dims
());
phi
::
DenseTensorMeta
meta
=
phi
::
DenseTensorMeta
(
in
->
dtype
(),
in
->
dims
());
std
::
shared_ptr
<
phi
::
DenseTensor
>
dense_cpu_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
meta
);
dense_cpu_tensor
->
ResizeAndAllocate
(
in
->
dims
());
Tensor
cpu_tensor
=
paddle
::
experimental
::
Tensor
(
dense_cpu_tensor
);
framework
::
TensorCopySync
(
*
in
,
platform
::
CPUPlace
(),
dense_cpu_tensor
.
get
());
if
(
with_switch_
)
{
// TODO(sandyhouse) send to and recv
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
if
(
gloo_rank_
==
0
)
{
std
::
vector
<
int
>
send_size
;
send_size
.
push_back
(
in
->
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
in
->
name
()},
send_size
,
dense_cpu_tensor
->
data
(),
in
->
numel
()
*
framework
::
DataTypeSize
(
in
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
}
else
{
int
ret
=
client_
->
Recv
(
gid_
,
{
in
->
name
()},
dense_cpu_tensor
->
data
(),
in
->
numel
()
*
framework
::
DataTypeSize
(
in
->
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Receive from the switch module error."
));
}
}
}
else
{
std
::
vector
<
Tensor
>
cpu_tensors
=
{
cpu_tensor
};
// auto gloo_task = inter_pg_->Broadcast(cpu_tensors);
// gloo_task->Wait();
inter_pg_
->
Broadcast
(
cpu_tensors
);
auto
gloo_task
=
inter_pg_
->
Broadcast
(
cpu_tensors
);
gloo_task
->
Wait
();
}
framework
::
TensorCopySync
(
*
dense_cpu_tensor
,
dense_cpu_tensor
->
place
(),
out
);
framework
::
TensorCopySync
(
*
dense_cpu_tensor
,
out
->
place
(),
out
);
}
inner_pg_
->
Broadcast
(
out
,
out
);
}
...
...
paddle/fluid/distributed/collective/ProcessGroupHeter.h
浏览文件 @
8525bc63
...
...
@@ -23,7 +23,6 @@
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
// #include "paddle/fluid/distributed/ps/service/heter_client.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_GLOO
...
...
@@ -48,6 +47,11 @@
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
(defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/ps/service/heter_client.h"
#endif
#include "paddle/fluid/distributed/collective/Common.h"
constexpr
const
char
*
HETER_BACKEND_NAME
=
"HETER_BACKEND"
;
...
...
@@ -108,6 +112,7 @@ class ProcessGroupHeter : public ProcessGroup {
int
gloo_rank_
;
int
gloo_size_
;
bool
with_switch_
;
std
::
string
switch_endpoint_
;
};
}
// namespace distributed
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
8525bc63
...
...
@@ -226,6 +226,43 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
return
task
;
}
template
<
typename
Fn
>
void
ProcessGroupNCCL
::
Collective
(
const
phi
::
DenseTensor
*
in
,
phi
::
DenseTensor
*
out
,
Fn
fn
,
CommType
op_type
)
{
std
::
vector
<
Place
>
places
;
places
.
push_back
(
in
->
place
());
const
auto
key
=
GetKeyFromPlaces
(
places
);
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
places_to_ncclcomm_
.
find
(
key
)
==
places_to_ncclcomm_
.
end
())
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
auto
&
nccl_comms
=
places_to_ncclcomm_
[
key
];
SyncDefaultStream
(
places
,
places_to_events_
[
key
],
places_to_ctx_
[
key
]);
// construct uninitialize guard for device
platform
::
CUDADeviceGuard
cuda_guard
;
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
cuda_guard
.
SetDevice
(
places
[
0
]);
memory
::
RecordStream
(
in
->
Holder
(),
places_to_ctx_
[
key
][
0
]
->
stream
());
}
{
platform
::
NCCLGroupGuard
nccl_guard
;
cuda_guard
.
SetDevice
(
places
[
0
]);
const
auto
&
nccl_stream
=
places_to_ctx_
[
key
][
0
]
->
stream
();
fn
(
in
,
out
,
nccl_comms
[
0
]
->
GetNcclComm
(),
nccl_stream
);
}
cuda_guard
.
SetDevice
(
places
[
0
]);
}
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
Fn
fn
,
int
dst_rank
,
CommType
op_type
)
{
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
8525bc63
...
...
@@ -146,6 +146,10 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
void
Collective
(
const
phi
::
DenseTensor
*
,
phi
::
DenseTensor
*
,
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
...
...
paddle/fluid/operators/collective/c_broadcast_op.cu.cc
浏览文件 @
8525bc63
...
...
@@ -37,7 +37,6 @@ class CBroadcastOpCUDAKernel : public framework::OpKernel<T> {
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
auto
place
=
ctx
.
GetPlace
();
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
...
...
@@ -46,6 +45,7 @@ class CBroadcastOpCUDAKernel : public framework::OpKernel<T> {
return
;
}
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
gpuStream_t
stream
=
nullptr
;
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
8525bc63
...
...
@@ -91,12 +91,18 @@ if(NOT ON_INFER)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup eager_reducer
)
if
(
WITH_NCCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_nccl
)
if
(
WITH_PSCORE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_heter
)
endif
()
endif
()
if
(
WITH_GLOO
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_gloo
)
endif
()
if
(
WITH_ASCEND_CL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_hccl
)
if
(
WITH_PSCORE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_heter
)
endif
()
endif
()
set
(
PYBIND_SRCS
${
PYBIND_SRCS
}
distributed_py.cc
)
endif
()
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
8525bc63
...
...
@@ -39,6 +39,11 @@ limitations under the License. */
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
(defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
...
...
@@ -217,6 +222,21 @@ void BindDistributed(py::module *m) {
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
(defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
py
::
class_
<
distributed
::
ProcessGroupHeter
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHeter
>>
(
*
m
,
"ProcessGroupHeter"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_size"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
...
...
@@ -227,6 +247,21 @@ void BindDistributed(py::module *m) {
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
(defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
py
::
class_
<
distributed
::
ProcessGroupHeter
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHeter
>>
(
*
m
,
"ProcessGroupHeter"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_rank"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#endif
py
::
class_
<
distributed
::
ProcessGroup
::
Task
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录