未验证 提交 84f9b9ef 编写于 作者: H hong 提交者: GitHub

Connect stop gradient with trainbale (#25248)

* connect stop_gradient with trainable; test=develop

* add value error message; test=develop
上级 d5e40d1b
...@@ -5111,7 +5111,8 @@ class ParamBase(core.VarBase): ...@@ -5111,7 +5111,8 @@ class ParamBase(core.VarBase):
list(shape) if shape else [], name, list(shape) if shape else [], name,
core.VarDesc.VarType.LOD_TENSOR, True) core.VarDesc.VarType.LOD_TENSOR, True)
self.trainable = kwargs.get('trainable', True) trainable = kwargs.get('trainable', True)
self.stop_gradient = not trainable
self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0}) self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})
...@@ -5126,6 +5127,19 @@ class ParamBase(core.VarBase): ...@@ -5126,6 +5127,19 @@ class ParamBase(core.VarBase):
def __str__(self): def __str__(self):
return self.to_string(True) return self.to_string(True)
@property
def trainable(self):
return not self.stop_gradient
@trainable.setter
def trainable(self, trainable):
if isinstance(trainable, bool):
self.stop_gradient = not trainable
else:
raise ValueError(
"The type of trainable MUST be bool, but the type is ",
type(trainable))
def to_string(self, throw_on_error, with_details=False): def to_string(self, throw_on_error, with_details=False):
""" """
To debug string. To debug string.
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import numpy as np
import paddle.fluid.dygraph as dygraph
class TestImperativeLayerTrainable(unittest.TestCase):
def test_set_trainable(self):
with fluid.dygraph.guard():
label = np.random.uniform(-1, 1, [10, 10]).astype(np.float32)
label = dygraph.to_variable(label)
linear = dygraph.Linear(10, 10)
y = linear(label)
self.assertTrue(y.stop_gradient == False)
linear.weight.trainable = False
linear.bias.trainable = False
self.assertTrue(linear.weight.trainable == False)
self.assertTrue(linear.weight.stop_gradient == True)
y = linear(label)
self.assertTrue(y.stop_gradient == True)
with self.assertRaises(ValueError):
linear.weight.trainable = "1"
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册