Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
84cd45f6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84cd45f6
编写于
4月 10, 2020
作者:
Z
Zhen Wang
提交者:
GitHub
4月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Solve the conflict of ops with the same name, test for CI. (#23573)
* solve the conflict of ops with the same name. test=develop
上级
795a0a9a
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
177 addition
and
143 deletion
+177
-143
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
...uid/framework/details/fast_threaded_ssa_graph_executor.cc
+7
-2
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+7
-2
paddle/fluid/operators/controlflow/fetch_op.cc
paddle/fluid/operators/controlflow/fetch_op.cc
+8
-2
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+5
-21
python/paddle/fluid/layers/loss.py
python/paddle/fluid/layers/loss.py
+1
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+14
-71
python/paddle/fluid/layers/sequence_lod.py
python/paddle/fluid/layers/sequence_lod.py
+2
-9
python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py
.../unittests/dygraph_to_static/test_save_inference_model.py
+0
-1
python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py
...id/tests/unittests/test_imperative_static_runner_mnist.py
+34
-30
python/paddle/fluid/tests/unittests/test_op_name_conflict.py
python/paddle/fluid/tests/unittests/test_op_name_conflict.py
+99
-0
未找到文件。
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
浏览文件 @
84cd45f6
...
@@ -150,8 +150,13 @@ void FastThreadedSSAGraphExecutor::InsertFetchOps(
...
@@ -150,8 +150,13 @@ void FastThreadedSSAGraphExecutor::InsertFetchOps(
"Possible reasons are:
\n
"
"Possible reasons are:
\n
"
" 1. The variable to be fetched is not defined in main program.
\n
"
" 1. The variable to be fetched is not defined in main program.
\n
"
" 2. The variable to be fetched is not an input or output of any "
" 2. The variable to be fetched is not an input or output of any "
"operator."
,
"operator.
\n
"
var_name
));
" 3. Confirm that you have used the fetch `Variable` format "
"instead of the string literal('%s') in `fetch_list` parameter "
"when using `executor.run` method. In other words, the format of "
"`executor.run(fetch_list=[fetch_var])`(fetch_var is a Variable) "
"is recommended."
,
var_name
,
var_name
));
auto
&
vars
=
fetched_var_it
->
second
;
auto
&
vars
=
fetched_var_it
->
second
;
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
84cd45f6
...
@@ -186,8 +186,13 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
...
@@ -186,8 +186,13 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
"Possible reasons are:
\n
"
"Possible reasons are:
\n
"
" 1. The variable to be fetched is not defined in main program.
\n
"
" 1. The variable to be fetched is not defined in main program.
\n
"
" 2. The variable to be fetched is not an input or output of any "
" 2. The variable to be fetched is not an input or output of any "
"operator."
,
"operator.
\n
"
var_name
));
" 3. Confirm that you have used the fetch `Variable` format "
"instead of the string literal('%s') in `fetch_list` parameter "
"when using `executor.run` method. In other words, the format of "
"`executor.run(fetch_list=[fetch_var])`(fetch_var is a Variable) "
"is recommended."
,
var_name
,
var_name
));
auto
&
vars
=
fetched_var_it
->
second
;
auto
&
vars
=
fetched_var_it
->
second
;
...
...
paddle/fluid/operators/controlflow/fetch_op.cc
浏览文件 @
84cd45f6
...
@@ -39,8 +39,14 @@ class FetchOp : public framework::OperatorBase {
...
@@ -39,8 +39,14 @@ class FetchOp : public framework::OperatorBase {
PADDLE_ENFORCE_NOT_NULL
(
PADDLE_ENFORCE_NOT_NULL
(
fetch_var
,
fetch_var
,
platform
::
errors
::
NotFound
(
platform
::
errors
::
NotFound
(
"Input variable(%s) cannot be found in scope for operator 'Fetch'."
,
"Input variable(%s) cannot be found in scope for operator 'Fetch'."
fetch_var_name
));
"Confirm that you have used the fetch `Variable` format "
"instead of the string literal('%s') in `fetch_list` "
"parameter when using `executor.run` method. In other "
"words, the format of "
"`executor.run(fetch_list=[fetch_var])`(fetch_var is a "
"Variable) is recommended."
,
fetch_var_name
,
fetch_var_name
));
auto
out_name
=
Output
(
"Out"
);
auto
out_name
=
Output
(
"Out"
);
auto
*
out_var
=
scope
.
FindVar
(
out_name
);
auto
*
out_var
=
scope
.
FindVar
(
out_name
);
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
84cd45f6
...
@@ -692,11 +692,7 @@ def iou_similarity(x, y, box_normalized=True, name=None):
...
@@ -692,11 +692,7 @@ def iou_similarity(x, y, box_normalized=True, name=None):
# [0. ]] with shape: [2, 1]
# [0. ]] with shape: [2, 1]
"""
"""
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"iou_similarity"
,
type
=
"iou_similarity"
,
...
@@ -828,12 +824,8 @@ def box_coder(prior_box,
...
@@ -828,12 +824,8 @@ def box_coder(prior_box,
"""
"""
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
if
name
is
None
:
output_box
=
helper
.
create_variable_for_type_inference
(
output_box
=
helper
.
create_variable_for_type_inference
(
dtype
=
prior_box
.
dtype
)
dtype
=
prior_box
.
dtype
)
else
:
output_box
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
dtype
,
persistable
=
False
)
inputs
=
{
"PriorBox"
:
prior_box
,
"TargetBox"
:
target_box
}
inputs
=
{
"PriorBox"
:
prior_box
,
"TargetBox"
:
target_box
}
attrs
=
{
attrs
=
{
...
@@ -877,11 +869,7 @@ def polygon_box_transform(input, name=None):
...
@@ -877,11 +869,7 @@ def polygon_box_transform(input, name=None):
out = fluid.layers.polygon_box_transform(input)
out = fluid.layers.polygon_box_transform(input)
"""
"""
helper
=
LayerHelper
(
"polygon_box_transform"
,
**
locals
())
helper
=
LayerHelper
(
"polygon_box_transform"
,
**
locals
())
if
name
is
None
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
else
:
output
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
input
,
persistable
=
False
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"polygon_box_transform"
,
type
=
"polygon_box_transform"
,
...
@@ -980,11 +968,7 @@ def yolov3_loss(x,
...
@@ -980,11 +968,7 @@ def yolov3_loss(x,
raise
TypeError
(
raise
TypeError
(
"Attr use_label_smooth of yolov3_loss must be a bool value"
)
"Attr use_label_smooth of yolov3_loss must be a bool value"
)
if
name
is
None
:
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
loss
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
objectness_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
objectness_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
gt_match_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
gt_match_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
...
...
python/paddle/fluid/layers/loss.py
浏览文件 @
84cd45f6
...
@@ -1427,11 +1427,7 @@ def sigmoid_cross_entropy_with_logits(x,
...
@@ -1427,11 +1427,7 @@ def sigmoid_cross_entropy_with_logits(x,
helper
=
LayerHelper
(
"sigmoid_cross_entropy_with_logits"
,
**
locals
())
helper
=
LayerHelper
(
"sigmoid_cross_entropy_with_logits"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"sigmoid_cross_entropy_with_logits"
,
type
=
"sigmoid_cross_entropy_with_logits"
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
84cd45f6
...
@@ -7859,11 +7859,7 @@ def gather_nd(input, index, name=None):
...
@@ -7859,11 +7859,7 @@ def gather_nd(input, index, name=None):
"""
"""
helper = LayerHelper('gather_nd', **locals())
helper = LayerHelper('gather_nd', **locals())
dtype = helper.input_dtype()
dtype = helper.input_dtype()
if name is None:
output = helper.create_variable_for_type_inference(dtype)
output = helper.create_variable_for_type_inference(dtype)
else:
output = helper.create_variable(
name=name, dtype=dtype, persistable=False)
helper.append_op(
helper.append_op(
type="gather_nd",
type="gather_nd",
inputs={"X": input,
inputs={"X": input,
...
@@ -8026,11 +8022,7 @@ def scatter_nd_add(ref, index, updates, name=None):
...
@@ -8026,11 +8022,7 @@ def scatter_nd_add(ref, index, updates, name=None):
helper = LayerHelper('scatter_nd_add', **locals())
helper = LayerHelper('scatter_nd_add', **locals())
dtype = helper.input_dtype(input_param_name='ref')
dtype = helper.input_dtype(input_param_name='ref')
if name is None:
output = helper.create_variable_for_type_inference(dtype)
output = helper.create_variable_for_type_inference(dtype)
else:
output = helper.create_variable(
name=name, dtype=dtype, persistable=False)
helper.append_op(
helper.append_op(
type="scatter_nd_add",
type="scatter_nd_add",
inputs={"X": ref,
inputs={"X": ref,
...
@@ -10606,11 +10598,7 @@ def _elementwise_op(helper):
...
@@ -10606,11 +10598,7 @@ def _elementwise_op(helper):
axis = helper.kwargs.get('axis', -1)
axis = helper.kwargs.get('axis', -1)
use_mkldnn = helper.kwargs.get('use_mkldnn', False)
use_mkldnn = helper.kwargs.get('use_mkldnn', False)
name = helper.kwargs.get('name', None)
name = helper.kwargs.get('name', None)
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
helper.append_op(
type=op_type,
type=op_type,
...
@@ -10705,11 +10693,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
...
@@ -10705,11 +10693,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
else:
else:
attrs['scale'] = float(scale)
attrs['scale'] = float(scale)
helper = LayerHelper('scale', **locals())
helper = LayerHelper('scale', **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
helper.append_op(
type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
...
@@ -11345,11 +11329,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
...
@@ -11345,11 +11329,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
assert x.dtype == y.dtype
assert x.dtype == y.dtype
if out is None:
if out is None:
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
if binary_op:
if binary_op:
helper.append_op(
helper.append_op(
...
@@ -11671,11 +11651,7 @@ def mean(x, name=None):
...
@@ -11671,11 +11651,7 @@ def mean(x, name=None):
helper = LayerHelper("mean", **locals())
helper = LayerHelper("mean", **locals())
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
helper.append_op(
type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})
type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})
...
@@ -11758,11 +11734,7 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
...
@@ -11758,11 +11734,7 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
helper = LayerHelper("mul", **locals())
helper = LayerHelper("mul", **locals())
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
helper.append_op(
type="mul", inputs={"X": x,
type="mul", inputs={"X": x,
...
@@ -11808,11 +11780,7 @@ def maxout(x, groups, name=None, axis=1):
...
@@ -11808,11 +11780,7 @@ def maxout(x, groups, name=None, axis=1):
if axis == -1:
if axis == -1:
axis = 3
axis = 3
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
helper.append_op(
type="maxout",
type="maxout",
...
@@ -11912,12 +11880,7 @@ def space_to_depth(x, blocksize, name=None):
...
@@ -11912,12 +11880,7 @@ def space_to_depth(x, blocksize, name=None):
if not (isinstance(blocksize, int)):
if not (isinstance(blocksize, int)):
raise ValueError("blocksize must be a python Int")
raise ValueError("blocksize must be a python Int")
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(
dtype=x.dtype) #fix create
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
helper.append_op(
type="space_to_depth",
type="space_to_depth",
...
@@ -11990,12 +11953,7 @@ def affine_channel(x,
...
@@ -11990,12 +11953,7 @@ def affine_channel(x,
"""
"""
helper = LayerHelper("affine_channel", **locals())
helper = LayerHelper("affine_channel", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
helper.append_op(
type="affine_channel",
type="affine_channel",
...
@@ -12109,11 +12067,7 @@ def similarity_focus(input, axis, indexes, name=None):
...
@@ -12109,11 +12067,7 @@ def similarity_focus(input, axis, indexes, name=None):
if len(indexes) == 0:
if len(indexes) == 0:
raise ValueError("indexes can not be empty.")
raise ValueError("indexes can not be empty.")
if name is None:
out = helper.create_variable_for_type_inference(dtype=input.dtype)
out = helper.create_variable_for_type_inference(dtype=input.dtype)
else:
out = helper.create_variable(
name=name, dtype=input.dtype, persistable=False)
helper.append_op(
helper.append_op(
type='similarity_focus',
type='similarity_focus',
inputs={'X': input},
inputs={'X': input},
...
@@ -12318,11 +12272,7 @@ def log_loss(input, label, epsilon=1e-4, name=None):
...
@@ -12318,11 +12272,7 @@ def log_loss(input, label, epsilon=1e-4, name=None):
"""
"""
helper = LayerHelper('log_loss', **locals())
helper = LayerHelper('log_loss', **locals())
if name is None:
loss = helper.create_variable_for_type_inference(dtype=input.dtype)
loss = helper.create_variable_for_type_inference(dtype=input.dtype)
else:
loss = helper.create_variable(
name=name, dtype=input.dtype, persistable=False)
helper.append_op(
helper.append_op(
type='log_loss',
type='log_loss',
...
@@ -12386,10 +12336,7 @@ def add_position_encoding(input, alpha, beta, name=None):
...
@@ -12386,10 +12336,7 @@ def add_position_encoding(input, alpha, beta, name=None):
helper = LayerHelper('add_position_encoding', **locals())
helper = LayerHelper('add_position_encoding', **locals())
dtype = helper.input_dtype()
dtype = helper.input_dtype()
if name is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable(name=name, dtype=dtype, persistable=False)
helper.append_op(
helper.append_op(
type="add_position_encoding",
type="add_position_encoding",
...
@@ -12456,11 +12403,7 @@ def bilinear_tensor_product(x,
...
@@ -12456,11 +12403,7 @@ def bilinear_tensor_product(x,
w = helper.create_parameter(
w = helper.create_parameter(
attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
if name is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable(name=name, dtype=dtype, persistable=False)
inputs = {"X": x, "Y": y, "Weight": w}
inputs = {"X": x, "Y": y, "Weight": w}
if helper.bias_attr:
if helper.bias_attr:
...
...
python/paddle/fluid/layers/sequence_lod.py
浏览文件 @
84cd45f6
...
@@ -1269,10 +1269,7 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
...
@@ -1269,10 +1269,7 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
"""
"""
helper
=
LayerHelper
(
'sequence_mask'
,
**
locals
())
helper
=
LayerHelper
(
'sequence_mask'
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
else
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
,
name
=
name
)
inputs
=
{
'X'
:
[
x
]}
inputs
=
{
'X'
:
[
x
]}
attrs
=
{
'out_dtype'
:
out
.
dtype
}
attrs
=
{
'out_dtype'
:
out
.
dtype
}
...
@@ -1337,11 +1334,7 @@ def sequence_reverse(x, name=None):
...
@@ -1337,11 +1334,7 @@ def sequence_reverse(x, name=None):
assert
not
in_dygraph_mode
(),
(
assert
not
in_dygraph_mode
(),
(
"sequence layer is not supported in dygraph mode yet."
)
"sequence layer is not supported in dygraph mode yet."
)
helper
=
LayerHelper
(
"sequence_reverse"
,
**
locals
())
helper
=
LayerHelper
(
"sequence_reverse"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"sequence_reverse"
,
type
=
"sequence_reverse"
,
...
...
python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py
浏览文件 @
84cd45f6
...
@@ -51,7 +51,6 @@ class TestDyToStaticSaveInferenceModel(unittest.TestCase):
...
@@ -51,7 +51,6 @@ class TestDyToStaticSaveInferenceModel(unittest.TestCase):
layer
=
SimpleFcLayer
(
fc_size
)
layer
=
SimpleFcLayer
(
fc_size
)
program_translator
=
ProgramTranslator
.
get_instance
()
program_translator
=
ProgramTranslator
.
get_instance
()
program_cache
=
ProgramTranslator
().
get_program_cache
adam
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
adam
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
program_translator
.
set_optimizer
(
adam
,
index_of_loss
=
0
)
program_translator
.
set_optimizer
(
adam
,
index_of_loss
=
0
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py
浏览文件 @
84cd45f6
...
@@ -75,10 +75,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
...
@@ -75,10 +75,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
return
_reader_impl
return
_reader_impl
def
train_and_save_model
(
self
):
def
train_and_save_model
(
self
):
with
new_program_scope
():
startup_program
=
fluid
.
default_startup_program
()
startup_program
=
fluid
.
default_startup_program
()
main_program
=
fluid
.
default_main_program
()
main_program
=
fluid
.
default_main_program
()
img
=
fluid
.
data
(
name
=
'img'
,
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
img
=
fluid
.
data
(
name
=
'img'
,
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
prediction
,
avg_loss
=
static_train_net
(
img
,
label
)
prediction
,
avg_loss
=
static_train_net
(
img
,
label
)
...
@@ -248,11 +250,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
...
@@ -248,11 +250,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
key
+=
core
.
loaded_var_suffix
()
key
+=
core
.
loaded_var_suffix
()
self
.
assertTrue
(
np
.
array_equal
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
array_equal
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
# np.testing.assert_array_almost_equal(static_out, dy_out)
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
,
atol
=
1e-04
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
core
.
loaded_var_suffix
()
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-
5
))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-
4
))
def
test_mnist_with_params_filename
(
self
):
def
test_mnist_with_params_filename
(
self
):
self
.
save_dirname
=
"mnist.inference.model"
self
.
save_dirname
=
"mnist.inference.model"
...
@@ -275,11 +278,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
...
@@ -275,11 +278,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
key
+=
core
.
loaded_var_suffix
()
key
+=
core
.
loaded_var_suffix
()
self
.
assertTrue
(
np
.
array_equal
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
array_equal
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
# np.testing.assert_array_almost_equal(static_out, dy_out)
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
,
atol
=
1e-04
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
key
+=
core
.
loaded_var_suffix
()
key
+=
core
.
loaded_var_suffix
()
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-
5
))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-
4
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_op_name_conflict.py
0 → 100644
浏览文件 @
84cd45f6
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
class
TestOpNameConflict
(
unittest
.
TestCase
):
def
test_conflict
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
1
],
dtype
=
'float32'
)
y
=
fluid
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'float32'
)
z
=
fluid
.
data
(
name
=
"z"
,
shape
=
[
1
],
dtype
=
'float32'
)
m
=
fluid
.
layers
.
elementwise_add
(
x
,
y
,
name
=
"add"
)
n
=
fluid
.
layers
.
elementwise_add
(
y
,
z
,
name
=
"add"
)
p
=
m
+
n
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
m_v
,
n_v
,
p_v
=
exe
.
run
(
feed
=
{
"x"
:
np
.
ones
((
1
),
"float32"
)
*
2
,
"y"
:
np
.
ones
((
1
),
"float32"
)
*
3
,
"z"
:
np
.
ones
((
1
),
"float32"
)
*
5
},
fetch_list
=
[
m
,
n
,
p
])
self
.
assertEqual
(
m_v
[
0
],
5.0
)
self
.
assertEqual
(
n_v
[
0
],
8.0
)
self
.
assertEqual
(
p_v
[
0
],
13.0
)
def
test_layers
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
data
=
fluid
.
data
(
name
=
'data'
,
shape
=
[
None
,
1
,
2
,
2
],
dtype
=
'float32'
)
tensor
=
fluid
.
data
(
name
=
'tensor'
,
shape
=
[
None
,
32
,
64
],
dtype
=
'float32'
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
,
lod_level
=
1
)
input_scale
=
fluid
.
layers
.
create_parameter
(
shape
=
[
1
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
Constant
(
2.0
))
input_bias
=
fluid
.
layers
.
create_parameter
(
shape
=
[
1
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.5
))
out_affine
=
fluid
.
layers
.
affine_channel
(
data
,
scale
=
input_scale
,
bias
=
input_bias
)
out_similarity
=
fluid
.
layers
.
similarity_focus
(
input
=
data
,
axis
=
1
,
indexes
=
[
0
])
position_tensor
=
fluid
.
layers
.
add_position_encoding
(
input
=
tensor
,
alpha
=
1.0
,
beta
=
1.0
)
x_reversed
=
fluid
.
layers
.
sequence_reverse
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
x_d
=
fluid
.
create_lod_tensor
(
np
.
array
([[
1.1
],
[
2.2
],
[
3.3
],
[
4.4
]]).
astype
(
'float32'
),
[[
1
,
3
]],
place
)
outs
=
exe
.
run
(
test_program
,
fetch_list
=
[
out_affine
,
out_similarity
,
position_tensor
,
x_reversed
],
feed
=
{
data
.
name
:
np
.
ones
([
1
,
1
,
2
,
2
]).
astype
(
'float32'
),
tensor
.
name
:
np
.
ones
([
1
,
32
,
64
]).
astype
(
'float32'
),
x
.
name
:
x_d
},
return_numpy
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录