From 84cd45f674237cfaf680a6b74b8a6df60c903141 Mon Sep 17 00:00:00 2001 From: Zhen Wang Date: Fri, 10 Apr 2020 10:54:41 +0800 Subject: [PATCH] Solve the conflict of ops with the same name, test for CI. (#23573) * solve the conflict of ops with the same name. test=develop --- .../fast_threaded_ssa_graph_executor.cc | 9 +- .../details/threaded_ssa_graph_executor.cc | 9 +- .../fluid/operators/controlflow/fetch_op.cc | 10 +- python/paddle/fluid/layers/detection.py | 26 +---- python/paddle/fluid/layers/loss.py | 6 +- python/paddle/fluid/layers/nn.py | 85 +++------------- python/paddle/fluid/layers/sequence_lod.py | 11 +-- .../test_save_inference_model.py | 1 - .../test_imperative_static_runner_mnist.py | 64 ++++++------ .../tests/unittests/test_op_name_conflict.py | 99 +++++++++++++++++++ 10 files changed, 177 insertions(+), 143 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/test_op_name_conflict.py diff --git a/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc index 78ea3654a4f..18bac69c8db 100644 --- a/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc +++ b/paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc @@ -150,8 +150,13 @@ void FastThreadedSSAGraphExecutor::InsertFetchOps( "Possible reasons are:\n" " 1. The variable to be fetched is not defined in main program.\n" " 2. The variable to be fetched is not an input or output of any " - "operator.", - var_name)); + "operator.\n" + " 3. Confirm that you have used the fetch `Variable` format " + "instead of the string literal('%s') in `fetch_list` parameter " + "when using `executor.run` method. In other words, the format of " + "`executor.run(fetch_list=[fetch_var])`(fetch_var is a Variable) " + "is recommended.", + var_name, var_name)); auto &vars = fetched_var_it->second; diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc index 63942f41967..593b8543808 100644 --- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc @@ -186,8 +186,13 @@ void ThreadedSSAGraphExecutor::InsertFetchOps( "Possible reasons are:\n" " 1. The variable to be fetched is not defined in main program.\n" " 2. The variable to be fetched is not an input or output of any " - "operator.", - var_name)); + "operator.\n" + " 3. Confirm that you have used the fetch `Variable` format " + "instead of the string literal('%s') in `fetch_list` parameter " + "when using `executor.run` method. In other words, the format of " + "`executor.run(fetch_list=[fetch_var])`(fetch_var is a Variable) " + "is recommended.", + var_name, var_name)); auto &vars = fetched_var_it->second; diff --git a/paddle/fluid/operators/controlflow/fetch_op.cc b/paddle/fluid/operators/controlflow/fetch_op.cc index 29be74a501f..ad481c34923 100644 --- a/paddle/fluid/operators/controlflow/fetch_op.cc +++ b/paddle/fluid/operators/controlflow/fetch_op.cc @@ -39,8 +39,14 @@ class FetchOp : public framework::OperatorBase { PADDLE_ENFORCE_NOT_NULL( fetch_var, platform::errors::NotFound( - "Input variable(%s) cannot be found in scope for operator 'Fetch'.", - fetch_var_name)); + "Input variable(%s) cannot be found in scope for operator 'Fetch'." + "Confirm that you have used the fetch `Variable` format " + "instead of the string literal('%s') in `fetch_list` " + "parameter when using `executor.run` method. In other " + "words, the format of " + "`executor.run(fetch_list=[fetch_var])`(fetch_var is a " + "Variable) is recommended.", + fetch_var_name, fetch_var_name)); auto out_name = Output("Out"); auto *out_var = scope.FindVar(out_name); diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index d67642e7987..142edf40ad9 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -692,11 +692,7 @@ def iou_similarity(x, y, box_normalized=True, name=None): # [0. ]] with shape: [2, 1] """ helper = LayerHelper("iou_similarity", **locals()) - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="iou_similarity", @@ -828,12 +824,8 @@ def box_coder(prior_box, """ helper = LayerHelper("box_coder", **locals()) - if name is None: - output_box = helper.create_variable_for_type_inference( - dtype=prior_box.dtype) - else: - output_box = helper.create_variable( - name=name, dtype=prior_box.dtype, persistable=False) + output_box = helper.create_variable_for_type_inference( + dtype=prior_box.dtype) inputs = {"PriorBox": prior_box, "TargetBox": target_box} attrs = { @@ -877,11 +869,7 @@ def polygon_box_transform(input, name=None): out = fluid.layers.polygon_box_transform(input) """ helper = LayerHelper("polygon_box_transform", **locals()) - if name is None: - output = helper.create_variable_for_type_inference(dtype=input.dtype) - else: - output = helper.create_variable( - name=name, dtype=prior_box.input, persistable=False) + output = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type="polygon_box_transform", @@ -980,11 +968,7 @@ def yolov3_loss(x, raise TypeError( "Attr use_label_smooth of yolov3_loss must be a bool value") - if name is None: - loss = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - loss = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + loss = helper.create_variable_for_type_inference(dtype=x.dtype) objectness_mask = helper.create_variable_for_type_inference(dtype='int32') gt_match_mask = helper.create_variable_for_type_inference(dtype='int32') diff --git a/python/paddle/fluid/layers/loss.py b/python/paddle/fluid/layers/loss.py index 94c14b194c9..174bf506d44 100644 --- a/python/paddle/fluid/layers/loss.py +++ b/python/paddle/fluid/layers/loss.py @@ -1427,11 +1427,7 @@ def sigmoid_cross_entropy_with_logits(x, helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals()) - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="sigmoid_cross_entropy_with_logits", diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 1f1fcd5f46d..aece48f5a71 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -7859,11 +7859,7 @@ def gather_nd(input, index, name=None): """ helper = LayerHelper('gather_nd', **locals()) dtype = helper.input_dtype() - if name is None: - output = helper.create_variable_for_type_inference(dtype) - else: - output = helper.create_variable( - name=name, dtype=dtype, persistable=False) + output = helper.create_variable_for_type_inference(dtype) helper.append_op( type="gather_nd", inputs={"X": input, @@ -8026,11 +8022,7 @@ def scatter_nd_add(ref, index, updates, name=None): helper = LayerHelper('scatter_nd_add', **locals()) dtype = helper.input_dtype(input_param_name='ref') - if name is None: - output = helper.create_variable_for_type_inference(dtype) - else: - output = helper.create_variable( - name=name, dtype=dtype, persistable=False) + output = helper.create_variable_for_type_inference(dtype) helper.append_op( type="scatter_nd_add", inputs={"X": ref, @@ -10606,11 +10598,7 @@ def _elementwise_op(helper): axis = helper.kwargs.get('axis', -1) use_mkldnn = helper.kwargs.get('use_mkldnn', False) name = helper.kwargs.get('name', None) - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type=op_type, @@ -10705,11 +10693,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): else: attrs['scale'] = float(scale) helper = LayerHelper('scale', **locals()) - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs) @@ -11345,11 +11329,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True): assert x.dtype == y.dtype if out is None: - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) if binary_op: helper.append_op( @@ -11671,11 +11651,7 @@ def mean(x, name=None): helper = LayerHelper("mean", **locals()) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean') - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}) @@ -11758,11 +11734,7 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None): helper = LayerHelper("mul", **locals()) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul') check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul') - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="mul", inputs={"X": x, @@ -11808,11 +11780,7 @@ def maxout(x, groups, name=None, axis=1): if axis == -1: axis = 3 - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="maxout", @@ -11912,12 +11880,7 @@ def space_to_depth(x, blocksize, name=None): if not (isinstance(blocksize, int)): raise ValueError("blocksize must be a python Int") - if name is None: - out = helper.create_variable_for_type_inference( - dtype=x.dtype) #fix create - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="space_to_depth", @@ -11990,12 +11953,7 @@ def affine_channel(x, """ helper = LayerHelper("affine_channel", **locals()) - - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="affine_channel", @@ -12109,11 +12067,7 @@ def similarity_focus(input, axis, indexes, name=None): if len(indexes) == 0: raise ValueError("indexes can not be empty.") - if name is None: - out = helper.create_variable_for_type_inference(dtype=input.dtype) - else: - out = helper.create_variable( - name=name, dtype=input.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='similarity_focus', inputs={'X': input}, @@ -12318,11 +12272,7 @@ def log_loss(input, label, epsilon=1e-4, name=None): """ helper = LayerHelper('log_loss', **locals()) - if name is None: - loss = helper.create_variable_for_type_inference(dtype=input.dtype) - else: - loss = helper.create_variable( - name=name, dtype=input.dtype, persistable=False) + loss = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='log_loss', @@ -12386,10 +12336,7 @@ def add_position_encoding(input, alpha, beta, name=None): helper = LayerHelper('add_position_encoding', **locals()) dtype = helper.input_dtype() - if name is None: - out = helper.create_variable_for_type_inference(dtype=dtype) - else: - out = helper.create_variable(name=name, dtype=dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type="add_position_encoding", @@ -12456,11 +12403,7 @@ def bilinear_tensor_product(x, w = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False) - - if name is None: - out = helper.create_variable_for_type_inference(dtype=dtype) - else: - out = helper.create_variable(name=name, dtype=dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=dtype) inputs = {"X": x, "Y": y, "Weight": w} if helper.bias_attr: diff --git a/python/paddle/fluid/layers/sequence_lod.py b/python/paddle/fluid/layers/sequence_lod.py index 74823900cf5..304571111db 100644 --- a/python/paddle/fluid/layers/sequence_lod.py +++ b/python/paddle/fluid/layers/sequence_lod.py @@ -1269,10 +1269,7 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None): """ helper = LayerHelper('sequence_mask', **locals()) - if name is None: - out = helper.create_variable_for_type_inference(dtype=dtype) - else: - out = helper.create_variable_for_type_inference(dtype=dtype, name=name) + out = helper.create_variable_for_type_inference(dtype=dtype) inputs = {'X': [x]} attrs = {'out_dtype': out.dtype} @@ -1337,11 +1334,7 @@ def sequence_reverse(x, name=None): assert not in_dygraph_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper("sequence_reverse", **locals()) - if name is None: - out = helper.create_variable_for_type_inference(dtype=x.dtype) - else: - out = helper.create_variable( - name=name, dtype=x.dtype, persistable=False) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="sequence_reverse", diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py index 3933cd02f2f..01673a5e639 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_save_inference_model.py @@ -51,7 +51,6 @@ class TestDyToStaticSaveInferenceModel(unittest.TestCase): layer = SimpleFcLayer(fc_size) program_translator = ProgramTranslator.get_instance() - program_cache = ProgramTranslator().get_program_cache adam = fluid.optimizer.SGD(learning_rate=0.001) program_translator.set_optimizer(adam, index_of_loss=0) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py b/python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py index 4907591d4fb..17afadedc3e 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_static_runner_mnist.py @@ -75,41 +75,43 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase): return _reader_impl def train_and_save_model(self): - startup_program = fluid.default_startup_program() - main_program = fluid.default_main_program() + with new_program_scope(): + startup_program = fluid.default_startup_program() + main_program = fluid.default_main_program() - img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32') - label = fluid.data(name='label', shape=[None, 1], dtype='int64') + img = fluid.data( + name='img', shape=[None, 1, 28, 28], dtype='float32') + label = fluid.data(name='label', shape=[None, 1], dtype='int64') - prediction, avg_loss = static_train_net(img, label) + prediction, avg_loss = static_train_net(img, label) - place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( - ) else fluid.CPUPlace() + place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( + ) else fluid.CPUPlace() - exe = fluid.Executor(place) + exe = fluid.Executor(place) - feeder = fluid.DataFeeder(feed_list=[img, label], place=place) - exe.run(startup_program) + feeder = fluid.DataFeeder(feed_list=[img, label], place=place) + exe.run(startup_program) - train_reader = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.mnist.train(), buf_size=100), - batch_size=self.batch_size) + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=100), + batch_size=self.batch_size) - for _ in range(0, self.epoch_num): - for batch_id, data in enumerate(train_reader()): - exe.run(main_program, - feed=feeder.feed(data), - fetch_list=[avg_loss]) + for _ in range(0, self.epoch_num): + for batch_id, data in enumerate(train_reader()): + exe.run(main_program, + feed=feeder.feed(data), + fetch_list=[avg_loss]) - if batch_id > self.batch_num: - break + if batch_id > self.batch_num: + break - fluid.io.save_inference_model( - self.save_dirname, ["img"], [prediction], - exe, - model_filename=self.model_filename, - params_filename=self.params_filename) + fluid.io.save_inference_model( + self.save_dirname, ["img"], [prediction], + exe, + model_filename=self.model_filename, + params_filename=self.params_filename) def load_and_train_dygraph(self): place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( @@ -248,11 +250,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase): key += core.loaded_var_suffix() self.assertTrue(np.array_equal(value, dy_param_init_value[key])) - self.assertTrue(np.allclose(static_out, dy_out)) + # np.testing.assert_array_almost_equal(static_out, dy_out) + self.assertTrue(np.allclose(static_out, dy_out, atol=1e-04)) for key, value in six.iteritems(static_param_value): key += core.loaded_var_suffix() - self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5)) + self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-4)) def test_mnist_with_params_filename(self): self.save_dirname = "mnist.inference.model" @@ -275,11 +278,12 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase): key += core.loaded_var_suffix() self.assertTrue(np.array_equal(value, dy_param_init_value[key])) - self.assertTrue(np.allclose(static_out, dy_out)) + # np.testing.assert_array_almost_equal(static_out, dy_out) + self.assertTrue(np.allclose(static_out, dy_out, atol=1e-04)) for key, value in six.iteritems(static_param_value): key += core.loaded_var_suffix() - self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5)) + self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-4)) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_op_name_conflict.py b/python/paddle/fluid/tests/unittests/test_op_name_conflict.py new file mode 100644 index 00000000000..ee8f0c2cd29 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_op_name_conflict.py @@ -0,0 +1,99 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.fluid as fluid +import numpy as np +import unittest + + +class TestOpNameConflict(unittest.TestCase): + def test_conflict(self): + main = fluid.Program() + startup = fluid.Program() + with fluid.unique_name.guard(): + with fluid.program_guard(main, startup): + x = fluid.data(name="x", shape=[1], dtype='float32') + y = fluid.data(name="y", shape=[1], dtype='float32') + z = fluid.data(name="z", shape=[1], dtype='float32') + + m = fluid.layers.elementwise_add(x, y, name="add") + n = fluid.layers.elementwise_add(y, z, name="add") + p = m + n + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + m_v, n_v, p_v = exe.run(feed={ + "x": np.ones((1), "float32") * 2, + "y": np.ones((1), "float32") * 3, + "z": np.ones((1), "float32") * 5 + }, + fetch_list=[m, n, p]) + + self.assertEqual(m_v[0], 5.0) + self.assertEqual(n_v[0], 8.0) + self.assertEqual(p_v[0], 13.0) + + def test_layers(self): + main = fluid.Program() + startup = fluid.Program() + with fluid.unique_name.guard(): + with fluid.program_guard(main, startup): + place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( + ) else fluid.CPUPlace() + exe = fluid.Executor(place) + + data = fluid.data( + name='data', shape=[None, 1, 2, 2], dtype='float32') + tensor = fluid.data( + name='tensor', shape=[None, 32, 64], dtype='float32') + x = fluid.data( + name='x', shape=[None, 1], dtype='float32', lod_level=1) + + input_scale = fluid.layers.create_parameter( + shape=[1], + dtype="float32", + default_initializer=fluid.initializer.Constant(2.0)) + input_bias = fluid.layers.create_parameter( + shape=[1], + dtype="float32", + default_initializer=fluid.initializer.Constant(0.5)) + out_affine = fluid.layers.affine_channel( + data, scale=input_scale, bias=input_bias) + out_similarity = fluid.layers.similarity_focus( + input=data, axis=1, indexes=[0]) + position_tensor = fluid.layers.add_position_encoding( + input=tensor, alpha=1.0, beta=1.0) + x_reversed = fluid.layers.sequence_reverse(x) + + exe.run(fluid.default_startup_program()) + test_program = fluid.default_main_program().clone(for_test=True) + + x_d = fluid.create_lod_tensor( + np.array([[1.1], [2.2], [3.3], [4.4]]).astype('float32'), + [[1, 3]], place) + outs = exe.run( + test_program, + fetch_list=[ + out_affine, out_similarity, position_tensor, x_reversed + ], + feed={ + data.name: np.ones([1, 1, 2, 2]).astype('float32'), + tensor.name: np.ones([1, 32, 64]).astype('float32'), + x.name: x_d + }, + return_numpy=False) + + +if __name__ == '__main__': + unittest.main() -- GitLab