Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
84c2315a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84c2315a
编写于
12月 31, 2020
作者:
L
lilong12
提交者:
GitHub
12月 31, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the paddle.distributed.split api (#29970) (#30041)
* add distributed.split, test=develop
上级
f0e04e1f
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
723 addition
and
3 deletion
+723
-3
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+226
-0
python/paddle/fluid/dygraph/parallel_helper.py
python/paddle/fluid/dygraph/parallel_helper.py
+4
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+15
-0
python/paddle/fluid/tests/unittests/collective_scatter_api.py
...on/paddle/fluid/tests/unittests/collective_scatter_api.py
+2
-2
python/paddle/fluid/tests/unittests/column_parallel_linear_api.py
...addle/fluid/tests/unittests/column_parallel_linear_api.py
+78
-0
python/paddle/fluid/tests/unittests/parallel_embedding_api.py
...on/paddle/fluid/tests/unittests/parallel_embedding_api.py
+76
-0
python/paddle/fluid/tests/unittests/parallel_embedding_api_none_divisible.py
.../tests/unittests/parallel_embedding_api_none_divisible.py
+76
-0
python/paddle/fluid/tests/unittests/row_parallel_linear_api.py
...n/paddle/fluid/tests/unittests/row_parallel_linear_api.py
+79
-0
python/paddle/fluid/tests/unittests/test_collective_api_base.py
.../paddle/fluid/tests/unittests/test_collective_api_base.py
+27
-1
python/paddle/fluid/tests/unittests/test_collective_split_col_linear.py
...fluid/tests/unittests/test_collective_split_col_linear.py
+35
-0
python/paddle/fluid/tests/unittests/test_collective_split_embedding.py
.../fluid/tests/unittests/test_collective_split_embedding.py
+35
-0
python/paddle/fluid/tests/unittests/test_collective_split_embedding_none_divisible.py
...ittests/test_collective_split_embedding_none_divisible.py
+35
-0
python/paddle/fluid/tests/unittests/test_collective_split_row_linear.py
...fluid/tests/unittests/test_collective_split_row_linear.py
+35
-0
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
84c2315a
...
...
@@ -21,6 +21,7 @@ from ..fluid.layers.tensor import fill_constant
from
..fluid.layers
import
utils
from
..fluid.dygraph.parallel
import
prepare_context
import
paddle
from
.fleet
import
fleet
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -31,6 +32,7 @@ __all__ = [
'all_gather'
,
'scatter'
,
'barrier'
,
'split'
,
'ReduceOp'
,
]
...
...
@@ -485,3 +487,227 @@ def barrier(group=0):
inputs
=
{
'X'
:
[
temp
]},
outputs
=
{
'Out'
:
[
temp
]},
attrs
=
{
'ring_id'
:
group
})
def
_parallel_linear
(
x
,
num_rows
,
num_cols
,
axis
,
param_attr
,
bias_attr
,
gather_out
,
inner_rank
,
name
):
"""
Parallel Linear
"""
if
not
name
:
name
=
"fc_by_row_rank_%d"
%
inner_rank
if
axis
==
0
else
"fc_by_col_rank_%d"
%
inner_rank
else
:
name
=
name
+
"_by_row_rank_%d"
%
inner_rank
if
axis
==
0
else
name
+
"_by_col_rank_%d"
%
inner_rank
linear
=
paddle
.
nn
.
Linear
(
num_rows
,
num_cols
,
weight_attr
=
param_attr
,
bias_attr
=
bias_attr
,
name
=
name
)
weight
=
linear
.
weight
weight
.
is_distributed
=
True
linear_out
=
linear
(
x
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
weight
.
name
].
is_distributed
=
True
if
gather_out
:
if
axis
==
0
:
paddle
.
distributed
.
all_reduce
(
linear_out
,
group
=
0
)
else
:
output
=
[]
paddle
.
distributed
.
all_gather
(
output
,
linear_out
,
group
=
0
)
linear_out
=
paddle
.
concat
(
output
,
axis
=
len
(
linear_out
.
shape
)
-
1
)
return
linear_out
def
_parallel_embedding
(
x
,
per_part_embeddings
,
origin_size
,
param_attr
,
inner_rank
,
num_partitions
,
name
):
"""
Parallel Embedding
"""
if
not
name
:
name
=
"emb_rank_%d"
%
inner_rank
else
:
name
=
name
+
"_rank_%d"
%
inner_rank
origin_num_embeddings
=
origin_size
[
0
]
embedding
=
paddle
.
nn
.
Embedding
(
per_part_embeddings
,
origin_size
[
1
],
padding_idx
=
per_part_embeddings
-
1
,
sparse
=
False
,
weight_attr
=
param_attr
,
name
=
name
)
origin_input_shape
=
x
.
shape
if
len
(
origin_input_shape
)
==
2
:
x
=
paddle
.
unsqueeze
(
x
,
axis
=-
1
)
else
:
assert
origin_input_shape
[
-
1
]
==
1
,
(
"The last dimension size of x must be 1."
)
x_shard
=
paddle
.
shard_index
(
x
,
origin_num_embeddings
,
num_partitions
,
inner_rank
,
per_part_embeddings
-
1
)
if
len
(
origin_input_shape
)
==
2
:
x_shard
=
paddle
.
squeeze
(
x_shard
,
axis
=-
1
)
embedding
.
weight
.
is_distributed
=
True
emb_out
=
embedding
(
x_shard
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
paddle
.
distributed
.
all_reduce
(
emb_out
,
group
=
0
)
return
emb_out
def
split
(
x
,
size
,
operation
,
axis
=
0
,
num_partitions
=
1
,
gather_out
=
True
,
weight_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
"""
Split the weight of the specified operation into multiple devices
and do the computation in parallel.
Now the following three cases are supported.
Case 1: Parallel Embedding
The weight of the embedding operation is a NxM matrix with N rows and M columns.
With parallel embedding, the weight is split into num_partitions partitions, each
of which is a matrix with (N/num_partitions + 1) rows and M column where the last
row as the padding idx.
Suppose we split the NxM weight into two partitons on device_0 and device_1
respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
keep unchanged and all other values are changed to N/2 which is the padding index and
are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
devices are sum-reduced.
Case 2: Row Parallel Linear
The weight of the linear operation is a NxM matrix with N rows and M columns.
With row parallel linear, the weight is split into num_partitions partitions, each
of which is a matrix with N/num_partitions rows and M column.
Case 3: Column Parallel Linear
The weight of the linear operation is a NxM matrix with N rows and M columns.
With column parallel linear, the weight is split into num_paratitions partitions, each
of which is a matrix with N rows and M/num_partitions column.
Args:
x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
on each partitions will be gathered after computation. Default: True.
weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
weights(Parameter) of the specified operation. Default: None.
bias_attr (ParamAttr, Optional): The parameter attribute for the bias
of the specified operation. Default: None.
name (str, Optional): The default value is None. Normally there is no need for user to set this
property. Default: None. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor.
Examples:
.. code-block:: python
import paddle
from paddle.distributed import init_parallel_env
paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
init_parallel_env()
data = paddle.randint(0, 8, shape=[10,4])
emb_out = padle.distributed.split(
data,
(8, 8),
operation="embedding",
num_partitions=2)
"""
assert
isinstance
(
size
,
(
list
,
tuple
)),
(
"The type of size for "
"paddle.distributed.split must be list or tuple."
)
assert
len
(
size
)
==
2
,
(
"Number of elements in size of "
"paddle.distributed.split must be two."
)
assert
isinstance
(
operation
,
str
),
(
"The type of operation for "
"paddle.distributed.split must be str."
)
supported_operations
=
[
'linear'
,
'embedding'
,
]
assert
operation
in
supported_operations
,
(
"The operation for "
"paddle.distributed.split must be one of {}."
.
format
(
supported_operations
))
if
in_dygraph_mode
():
rank
=
paddle
.
distributed
.
get_rank
()
nranks
=
paddle
.
distributed
.
get_world_size
()
else
:
assert
fleet
.
_role_maker
,
(
"To use paddle.distributed.split, "
"you must call fleet.init() firstly."
)
rank
=
fleet
.
worker_index
()
nranks
=
fleet
.
worker_num
()
# rank within a model parallel group
inner_rank
=
rank
%
num_partitions
if
operation
==
"embedding"
:
assert
axis
==
0
,
(
"We only support to split the weight of embedding "
"along the first axis now."
)
per_part_size
=
(
size
[
0
]
+
num_partitions
-
1
)
//
num_partitions
last_part_size
=
size
[
0
]
-
per_part_size
*
(
num_partitions
-
1
)
if
inner_rank
==
num_partitions
-
1
:
per_part_size
=
last_part_size
per_part_size
+=
1
# make the last row as the padding index
emb_out
=
_parallel_embedding
(
x
,
per_part_size
,
size
,
weight_attr
,
inner_rank
,
num_partitions
,
name
)
return
emb_out
else
:
if
axis
==
0
:
assert
size
[
0
]
%
num_partitions
==
0
,
(
"Number of rows of the weight for linear ({}) must be"
" divisible by num_partitions ({})"
.
format
(
size
[
0
],
num_partitions
))
per_part_size
=
size
[
0
]
//
num_partitions
linear_size
=
(
per_part_size
,
size
[
1
])
assert
x
.
shape
[
-
1
]
==
per_part_size
,
(
"The width ({}) of the input "
"x must be equal to the height ({}) of the weight. Maybe you "
"should split the input x using paddle.split."
.
format
(
x
.
shape
[
-
1
],
per_part_size
))
elif
axis
==
1
:
assert
size
[
1
]
%
num_partitions
==
0
,
(
"Number of column of the weight for linear ({}) must be"
" divisible by num_partitions ({})"
.
format
(
size
[
1
],
num_partitions
))
per_part_size
=
size
[
1
]
//
num_partitions
linear_size
=
(
size
[
0
],
per_part_size
)
else
:
raise
ValueError
(
"The value of axis must be 0 or 1, but the value "
"given is {}."
.
format
(
axis
))
linear_out
=
_parallel_linear
(
x
,
linear_size
[
0
],
linear_size
[
1
],
axis
,
weight_attr
,
bias_attr
,
gather_out
,
inner_rank
,
name
=
name
)
return
linear_out
python/paddle/fluid/dygraph/parallel_helper.py
浏览文件 @
84c2315a
...
...
@@ -44,5 +44,9 @@ def _init_parallel_ctx():
def
_broadcast_parameters
(
parameters
):
for
param
in
parameters
:
# In model parallel, some parameters are split into multiple devices,
# so we could not broadcast these parameters.
if
param
.
is_distributed
:
continue
if
isinstance
(
param
,
Parameter
)
and
param
.
trainable
:
collective
.
_broadcast
(
param
,
0
,
sync_mode
=
True
)
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
84c2315a
...
...
@@ -73,6 +73,10 @@ if(NOT WITH_GPU OR WIN32)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_sendrecv
)
LIST
(
REMOVE_ITEM TEST_OPS test_reducescatter
)
LIST
(
REMOVE_ITEM TEST_OPS test_reducescatter_api
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_embedding
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_embedding_none_divisible
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_row_linear
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_split_col_linear
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_reduce_api
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_scatter_api
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_barrier_api
)
...
...
@@ -824,6 +828,17 @@ if(WITH_GPU AND NOT WIN32)
set_tests_properties
(
test_collective_barrier_api PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_scatter PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_sendrecv PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_split_embedding
test_collective_split_embedding_none_divisible
test_collective_split_row_linear
test_collective_split_col_linear
test_collective_scatter_api
test_collective_barrier_api
test_collective_reduce_api
test_collective_allreduce_api
test_collective_broadcast_api
test_collective_allgather_api
PROPERTIES LABELS
"RUN_TYPE=DIST"
)
endif
()
if
(
WITH_GPU
)
set_tests_properties
(
test_imperative_auto_mixed_precision PROPERTIES TIMEOUT 120
)
...
...
python/paddle/fluid/tests/unittests/collective_scatter_api.py
浏览文件 @
84c2315a
...
...
@@ -47,10 +47,10 @@ class TestCollectiveScatterAPI(TestCollectiveAPIRunnerBase):
tindata
=
layers
.
data
(
name
=
"tindata"
,
shape
=
[
10
,
1000
],
dtype
=
'float
64
'
,
dtype
=
'float
32
'
,
append_batch_size
=
False
)
toutdata
=
layers
.
fill_constant
(
shape
=
[
5
,
1000
],
dtype
=
'float
64
'
,
value
=
1.0
)
shape
=
[
5
,
1000
],
dtype
=
'float
32
'
,
value
=
1.0
)
tensor_list
=
None
if
rank
==
1
:
tensor_list
=
paddle
.
split
(
tindata
,
2
,
axis
=
0
)
...
...
python/paddle/fluid/tests/unittests/column_parallel_linear_api.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestColumnParallelLinearAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
1000
,
16
)
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
paddle
.
distributed
.
broadcast
(
data
,
src
=
0
)
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[:,
0
:
8
]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[:,
8
:
16
]),
)
linear_out
=
paddle
.
distributed
.
split
(
data
,
size
=
(
1000
,
16
),
operation
=
'linear'
,
axis
=
1
,
num_partitions
=
2
,
weight_attr
=
param_attr
,
bias_attr
=
False
,
)
return
[
linear_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestColumnParallelLinearAPI
,
"column_parallel_linear"
)
python/paddle/fluid/tests/unittests/parallel_embedding_api.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestParallelEmbeddingAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
10
,
8
)
paddle
.
seed
(
2020
)
data_in
=
paddle
.
randint
(
0
,
8
,
shape
=
(
10
,
4
))
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
5
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
5
:
10
,
:]),
)
emb_out
=
paddle
.
distributed
.
split
(
data_in
,
(
8
,
8
),
operation
=
"embedding"
,
num_partitions
=
2
,
weight_attr
=
param_attr
)
return
[
data_in
,
emb_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestParallelEmbeddingAPI
,
"parallel_embedding"
)
python/paddle/fluid/tests/unittests/parallel_embedding_api_none_divisible.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestParallelEmbeddingAPINoneDivisible
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
9
,
8
)
paddle
.
seed
(
2020
)
data_in
=
paddle
.
randint
(
0
,
7
,
shape
=
(
10
,
4
))
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
5
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
5
:
9
,
:]),
)
emb_out
=
paddle
.
distributed
.
split
(
data_in
,
(
7
,
8
),
operation
=
"embedding"
,
num_partitions
=
2
,
weight_attr
=
param_attr
)
return
[
data_in
,
emb_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestParallelEmbeddingAPINoneDivisible
,
"parallel_embedding"
)
python/paddle/fluid/tests/unittests/row_parallel_linear_api.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.incubate.fleet.base
import
role_maker
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base
import
TestCollectiveAPIRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestRowParallelLinearAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
fleet
.
init
(
is_collective
=
True
)
np
.
random
.
seed
(
2020
)
np_array
=
np
.
random
.
rand
(
1000
,
16
)
data
=
paddle
.
static
.
data
(
name
=
'tindata'
,
shape
=
[
10
,
1000
],
dtype
=
"float32"
)
paddle
.
distributed
.
broadcast
(
data
,
src
=
0
)
data
=
paddle
.
split
(
data
,
2
,
axis
=
1
)[
rank
]
if
rank
==
0
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
0
:
500
,
:]),
)
else
:
param_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
NumpyArrayInitializer
(
np_array
[
500
:
1000
,
:]),
)
linear_out
=
paddle
.
distributed
.
split
(
data
,
size
=
(
1000
,
8
),
operation
=
'linear'
,
axis
=
0
,
num_partitions
=
2
,
weight_attr
=
param_attr
,
bias_attr
=
False
,
)
return
[
linear_out
]
if
__name__
==
"__main__"
:
runtime_main
(
TestRowParallelLinearAPI
,
"row_parallel_linear"
)
python/paddle/fluid/tests/unittests/test_collective_api_base.py
浏览文件 @
84c2315a
...
...
@@ -55,7 +55,7 @@ class TestCollectiveAPIRunnerBase(object):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
np
.
random
.
seed
(
os
.
getpid
())
indata
=
np
.
random
.
random
((
10
,
1000
))
indata
=
np
.
random
.
random
((
10
,
1000
))
.
astype
(
"float32"
)
fetch_list
=
[]
for
elem
in
result
:
fetch_list
.
append
(
elem
.
name
)
...
...
@@ -221,5 +221,31 @@ class TestDistBase(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
tr1_out
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"parallel_embedding"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
need_result
=
np
.
random
.
rand
(
10
,
8
)
for
i
in
range
(
result_data
.
shape
[
0
]):
for
j
in
range
(
result_data
.
shape
[
1
]):
data
=
result_data
[
i
][
j
]
if
data
>=
4
:
data
+=
1
assert
np
.
allclose
(
tr0_out
[
1
][
i
][
j
],
need_result
[
data
],
atol
=
1e-08
)
elif
col_type
==
"row_parallel_linear"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
weight
=
np
.
random
.
rand
(
1000
,
16
)
need_result
=
np
.
matmul
(
input1
,
weight
)
self
.
assertTrue
(
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
elif
col_type
==
"column_parallel_linear"
:
result_data
=
tr0_out
[
0
]
np
.
random
.
seed
(
2020
)
weight
=
np
.
random
.
rand
(
1000
,
16
)
need_result
=
np
.
matmul
(
input1
,
weight
)
self
.
assertTrue
(
np
.
allclose
(
result_data
,
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
))
else
:
pass
python/paddle/fluid/tests/unittests/test_collective_split_col_linear.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestColParallelLinearAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_col_parallel_linear
(
self
):
self
.
check_with_place
(
"column_parallel_linear_api.py"
,
"column_parallel_linear"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_collective_split_embedding.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestParallelEmbeddingAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_parallel_embedding
(
self
):
self
.
check_with_place
(
"parallel_embedding_api.py"
,
"parallel_embedding"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_collective_split_embedding_none_divisible.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestParallelEmbeddingNoneDivisibleAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_parallel_embedding_none_divisible
(
self
):
self
.
check_with_place
(
"parallel_embedding_api_none_divisible.py"
,
"parallel_embedding"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_collective_split_row_linear.py
0 → 100644
浏览文件 @
84c2315a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base
import
TestDistBase
paddle
.
enable_static
()
class
TestRowParallelLinearAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_row_parallel_linear
(
self
):
self
.
check_with_place
(
"row_parallel_linear_api.py"
,
"row_parallel_linear"
,
"nccl"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录