Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
84bf5c31
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84bf5c31
编写于
8月 10, 2022
作者:
X
xiaoxiaohehe001
提交者:
GitHub
8月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference] Support cuda_graph. (#44878)
* cuda_graph * cuda_graph_ * cuda_graph_ * cuda_graph_
上级
93c5c887
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
193 addition
and
15 deletion
+193
-15
paddle/fluid/framework/inference_cached_ops.h
paddle/fluid/framework/inference_cached_ops.h
+29
-0
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+162
-15
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+1
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
未找到文件。
paddle/fluid/framework/inference_cached_ops.h
0 → 100644
浏览文件 @
84bf5c31
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
namespace
paddle
{
namespace
framework
{
// cached ops will be captured to accelerate gpu performance.
// 1. op will generate a cudaGraph to record inner gpu kernels
// 2. inner gpu kernels can be launched by calling the cudagraphExecutor
// only once.
std
::
vector
<
std
::
string
>
cached_gpu_ops
{
"conv2d_fusion"
,
"depthwise_conv2d"
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/operator.cc
浏览文件 @
84bf5c31
...
@@ -21,6 +21,7 @@ limitations under the License. */
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/inference_cached_ops.h"
#include "paddle/fluid/framework/op_call_stack.h"
#include "paddle/fluid/framework/op_call_stack.h"
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/shape_inference.h"
...
@@ -709,6 +710,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
...
@@ -709,6 +710,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
return
in
[
0
]
!=
nullptr
;
return
in
[
0
]
!=
nullptr
;
}
}
size_t
InputsSize
()
const
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
return
op_proto
->
inputs
().
size
();
}
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
// has only one output
// has only one output
const
auto
&
outs
=
ctx_
.
outputs
;
const
auto
&
outs
=
ctx_
.
outputs
;
...
@@ -1200,7 +1207,86 @@ struct OperatorWithKernel::CacheImpl {
...
@@ -1200,7 +1207,86 @@ struct OperatorWithKernel::CacheImpl {
return
infer_shape_ctx_
.
get
();
return
infer_shape_ctx_
.
get
();
}
}
bool
updateInputsShapesDimCache
()
{
bool
flag
=
false
;
size_t
inputs_size
=
std
::
min
(
kernel_ctx_
->
InputsSize
(),
infer_shape_ctx_
->
InputsSize
());
for
(
size_t
i
=
0
;
i
<
inputs_size
;
i
++
)
{
const
std
::
string
&
in_name
=
infer_shape_ctx_
->
GetInputNameByIdx
(
i
);
if
(
!
infer_shape_ctx_
->
HasInputs
(
in_name
))
continue
;
if
(
!
inputs_dim_caches
.
count
(
in_name
)
||
infer_shape_ctx_
->
GetInputsDim
(
in_name
)
!=
inputs_dim_caches
[
in_name
])
{
inputs_dim_caches
[
in_name
]
=
infer_shape_ctx_
->
GetInputsDim
(
in_name
);
flag
=
true
;
}
}
#if defined(PADDLE_WITH_CUDA)
if
(
flag
)
discardCudaGraphCache
();
#endif
return
flag
;
}
bool
cudaGraphEnabled
(
bool
need_prepare_data
,
bool
need_prepare_phi_data
,
const
std
::
string
&
op_type
)
const
{
#if defined(PADDLE_WITH_CUDA)
return
std
::
count
(
cached_gpu_ops
.
begin
(),
cached_gpu_ops
.
end
(),
op_type
)
&&
!
need_prepare_data
&&
!
need_prepare_phi_data
;
#else
return
false
;
#endif
}
bool
cacheEnabled
(
bool
run_phi_kernel
,
bool
need_prepare_data
,
bool
need_prepare_phi_data
,
const
std
::
string
&
op_type
)
const
{
#if defined(PADDLE_WITH_CUDA)
if
(
cudaGraphEnabled
(
need_prepare_data
,
need_prepare_phi_data
,
op_type
))
return
true
;
#endif
return
(
run_phi_kernel
&&
!
need_prepare_data
&&
!
need_prepare_phi_data
);
}
#if defined(PADDLE_WITH_CUDA)
void
startCudaGraphCapture
()
{
phi
::
GPUContext
*
ctx
=
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CUDAPlace
(
0
)));
auto
stream
=
ctx
->
stream
();
cudaStreamBeginCapture
(
stream
,
cudaStreamCaptureModeGlobal
);
}
void
endCudaGraphCapture
()
{
phi
::
GPUContext
*
ctx
=
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CUDAPlace
(
0
)));
auto
stream
=
ctx
->
stream
();
cudaGraph_t
graph_
;
cudaStreamEndCapture
(
stream
,
&
graph_
);
cudaGraphInstantiate
(
&
graph_instance_
,
graph_
,
NULL
,
NULL
,
0
);
graph_generated
=
true
;
}
void
runCudaGraph
()
{
phi
::
GPUContext
*
ctx
=
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CUDAPlace
(
0
)));
auto
stream
=
ctx
->
stream
();
cudaGraphLaunch
(
graph_instance_
,
stream
);
}
bool
cudaGraphGenerated
()
{
return
graph_generated
;
}
void
discardCudaGraphCache
()
{
graph_generated
=
false
;
}
private:
bool
graph_generated
{
false
};
cudaGraphExec_t
graph_instance_
;
#endif
private:
private:
std
::
map
<
std
::
string
,
std
::
vector
<
DDim
>>
inputs_dim_caches
;
std
::
unique_ptr
<
phi
::
KernelContext
>
kernel_ctx_
;
std
::
unique_ptr
<
phi
::
KernelContext
>
kernel_ctx_
;
std
::
unique_ptr
<
RuntimeInferShapeContext
>
infer_shape_ctx_
;
std
::
unique_ptr
<
RuntimeInferShapeContext
>
infer_shape_ctx_
;
};
};
...
@@ -1410,8 +1496,74 @@ void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
...
@@ -1410,8 +1496,74 @@ void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
this
->
Info
().
infer_shape_
(
&
infer_shape_ctx
);
this
->
Info
().
infer_shape_
(
&
infer_shape_ctx
);
}
}
void
OperatorWithKernel
::
InitOpCache
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
&
scope
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
cache_update_mutex_
);
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
&
scope
)
{
runtime_ctx_
.
reset
(
new
RuntimeContext
(
Inputs
(),
Outputs
(),
scope
));
pre_scope_
=
&
scope
;
}
}
impl_
=
new
CacheImpl
(
new
phi
::
KernelContext
(),
new
RuntimeInferShapeContext
(
*
this
,
*
runtime_ctx_
.
get
()));
RunImpl
(
scope
,
place
,
runtime_ctx_
.
get
());
if
(
impl_
->
cacheEnabled
(
run_phi_kernel_
,
need_prepare_data_
,
need_prepare_phi_data_
,
Type
()))
{
impl_
->
updateInputsShapesDimCache
();
}
}
void
OperatorWithKernel
::
RunImpl
(
const
Scope
&
scope
,
void
OperatorWithKernel
::
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
const
platform
::
Place
&
place
)
const
{
// function name: runOpCache()
// effect: reuse cacheImpl to accelerate inference period
auto
runOpCache
=
[
&
]()
{
#if defined(PADDLE_WITH_CUDA)
if
(
impl_
->
cudaGraphEnabled
(
need_prepare_data_
,
need_prepare_phi_data_
,
Type
()))
{
// cudaGraph cache
if
(
impl_
->
updateInputsShapesDimCache
())
{
if
(
!
all_kernels_must_compute_runtime_shape_
)
this
->
Info
().
infer_shape_
(
impl_
->
getRuntimeInferShapeContext
());
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
}
else
if
(
!
impl_
->
cudaGraphGenerated
())
{
impl_
->
startCudaGraphCapture
();
impl_
->
getKernelContext
();
RunImpl
(
scope
,
place
,
runtime_ctx_
.
get
());
impl_
->
endCudaGraphCapture
();
}
else
{
if
(
!
all_kernels_must_compute_runtime_shape_
)
this
->
Info
().
infer_shape_
(
impl_
->
getRuntimeInferShapeContext
());
impl_
->
runCudaGraph
();
}
return
;
}
#endif
// common cache
if
(
!
all_kernels_must_compute_runtime_shape_
)
this
->
Info
().
infer_shape_
(
impl_
->
getRuntimeInferShapeContext
());
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
};
// function name: updateRuntimeContext
// effect: update runtime_ctx from current scope.
auto
updateRuntimeContext
=
[
&
](
const
Scope
&
scope
)
{
const
Scope
*
cur_scope
=
&
scope
;
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
cur_scope
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
cache_update_mutex_
);
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
cur_scope
)
{
runtime_ctx_
.
reset
(
new
RuntimeContext
(
Inputs
(),
Outputs
(),
scope
));
pre_scope_
=
cur_scope
;
}
}
};
// To reduce the elapsed time of HasAttr, we use bool variable to record the
// To reduce the elapsed time of HasAttr, we use bool variable to record the
// result of HasAttr.
// result of HasAttr.
if
(
!
enable_cache_runtime_context_
&&
HasAttr
(
kEnableCacheRuntimeContext
))
if
(
!
enable_cache_runtime_context_
&&
HasAttr
(
kEnableCacheRuntimeContext
))
...
@@ -1424,20 +1576,18 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
...
@@ -1424,20 +1576,18 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
RuntimeContext
ctx
(
Inputs
(),
Outputs
(),
scope
);
RuntimeContext
ctx
(
Inputs
(),
Outputs
(),
scope
);
RunImpl
(
scope
,
place
,
&
ctx
);
RunImpl
(
scope
,
place
,
&
ctx
);
pre_scope_
=
cur_scope
;
pre_scope_
=
cur_scope
;
}
else
if
(
run_phi_kernel_
&&
impl_
!=
nullptr
&&
!
need_prepare_data_
&&
!
need_prepare_phi_data_
)
{
if
(
!
all_kernels_must_compute_runtime_shape_
)
this
->
Info
().
infer_shape_
(
impl_
->
getRuntimeInferShapeContext
());
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
}
else
{
}
else
{
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
cur_scope
)
{
if
(
!
impl_
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
cache_update_mutex_
);
InitOpCache
(
scope
,
place
);
if
(
runtime_ctx_
.
get
()
==
nullptr
||
pre_scope_
!=
cur_scope
)
{
}
else
if
(
impl_
->
cacheEnabled
(
run_phi_kernel_
,
runtime_ctx_
.
reset
(
new
RuntimeContext
(
Inputs
(),
Outputs
(),
scope
));
need_prepare_data_
,
pre_scope_
=
cur_scope
;
need_prepare_phi_data_
,
}
Type
()))
{
runOpCache
();
}
else
{
updateRuntimeContext
(
scope
);
RunImpl
(
scope
,
place
,
runtime_ctx_
.
get
());
}
}
RunImpl
(
scope
,
place
,
runtime_ctx_
.
get
());
}
}
}
}
...
@@ -1702,9 +1852,6 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
...
@@ -1702,9 +1852,6 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
phi
::
KernelContext
phi_kernel_context
;
phi
::
KernelContext
phi_kernel_context
;
if
(
enable_cache_runtime_context_
&&
!
need_prepare_phi_data_
&&
if
(
enable_cache_runtime_context_
&&
!
need_prepare_phi_data_
&&
!
need_prepare_data_
)
{
!
need_prepare_data_
)
{
impl_
=
new
CacheImpl
(
new
phi
::
KernelContext
(),
new
RuntimeInferShapeContext
(
*
this
,
*
runtime_ctx
));
BuildPhiKernelContext
(
*
runtime_ctx
,
dev_ctx
,
impl_
->
getKernelContext
());
BuildPhiKernelContext
(
*
runtime_ctx
,
dev_ctx
,
impl_
->
getKernelContext
());
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
(
*
phi_kernel_
)(
impl_
->
getKernelContext
());
}
else
{
}
else
{
...
...
paddle/fluid/framework/operator.h
浏览文件 @
84bf5c31
...
@@ -712,6 +712,7 @@ class OperatorWithKernel : public OperatorBase {
...
@@ -712,6 +712,7 @@ class OperatorWithKernel : public OperatorBase {
// used for IndicateOrPromoteVarDataTypes
// used for IndicateOrPromoteVarDataTypes
Tensor
*
GetTensorFormInputSafely
(
const
ExecutionContext
&
ctx
,
Tensor
*
GetTensorFormInputSafely
(
const
ExecutionContext
&
ctx
,
const
std
::
string
&
name
)
const
;
const
std
::
string
&
name
)
const
;
void
InitOpCache
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
;
protected:
protected:
mutable
std
::
unique_ptr
<
OpKernelType
>
kernel_type_
;
mutable
std
::
unique_ptr
<
OpKernelType
>
kernel_type_
;
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
84bf5c31
...
@@ -165,6 +165,7 @@ const std::vector<std::string> kGpuLowerPrecisionPasses{
...
@@ -165,6 +165,7 @@ const std::vector<std::string> kGpuLowerPrecisionPasses{
"gpu_cpu_map_matmul_v2_to_matmul_pass"
,
"gpu_cpu_map_matmul_v2_to_matmul_pass"
,
"fc_fuse_pass"
,
"fc_fuse_pass"
,
"fc_elementwise_layernorm_fuse_pass"
,
"fc_elementwise_layernorm_fuse_pass"
,
"runtime_context_cache_pass"
,
};
};
const
std
::
vector
<
std
::
string
>
kTrtLowerPrecisionPasses
{
const
std
::
vector
<
std
::
string
>
kTrtLowerPrecisionPasses
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录