Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
849442ef
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
849442ef
编写于
9月 27, 2020
作者:
F
ForFishes
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the speed&memory of matmul
上级
a85592bc
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
280 addition
and
100 deletion
+280
-100
paddle/fluid/operators/matmul_v2_op.h
paddle/fluid/operators/matmul_v2_op.h
+280
-100
未找到文件。
paddle/fluid/operators/matmul_v2_op.h
浏览文件 @
849442ef
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <algorithm>
#include <functional>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -350,20 +351,158 @@ class MatMulV2Kernel : public framework::OpKernel<T> {
}
};
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static
framework
::
Tensor
FoldInitDims
(
const
framework
::
Tensor
&
input
)
{
auto
output
=
input
;
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
==
3
)
{
output
.
Resize
({
in_dims
[
0
]
*
in_dims
[
1
],
in_dims
[
2
]});
}
return
output
;
}
// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template
<
typename
DeviceContext
,
typename
T
>
static
framework
::
Tensor
FoldHeadAndLastDims
(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
)
{
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
!=
3
)
{
return
input
;
}
framework
::
Tensor
output
;
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
],
in_dims
[
2
]});
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
axis
=
{
1
,
0
,
2
};
math
::
Transpose
<
DeviceContext
,
T
,
3
>
trans
;
trans
(
context
,
input
,
&
output
,
axis
);
output
.
Resize
({
in_dims
[
1
],
in_dims
[
0
]
*
in_dims
[
2
]});
return
output
;
}
/**
* Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
* original x_dim is returned.
*/
static
framework
::
DDim
RowMatrixFromVector
(
const
framework
::
DDim
&
x_dim
)
{
if
(
x_dim
.
size
()
>
1
)
{
return
x_dim
;
}
return
framework
::
make_ddim
({
1
,
x_dim
[
0
]});
}
/**
* Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
* original y_dim is returned.
*/
static
framework
::
DDim
ColumnMatrixFromVector
(
const
framework
::
DDim
&
y_dim
)
{
if
(
y_dim
.
size
()
>
1
)
{
return
y_dim
;
}
return
framework
::
make_ddim
({
y_dim
[
0
],
1
});
}
/**
* Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
*
* The shape would be [BatchSize, H, W] or [H, W].
* If transposed, `H,W` will be swapped.
*/
static
void
ReshapeTensorIntoMatrixSequence
(
framework
::
Tensor
*
x
,
const
math
::
MatDescriptor
&
descriptor
)
{
int64_t
h
,
w
;
h
=
descriptor
.
height_
;
w
=
descriptor
.
width_
;
if
(
descriptor
.
trans_
)
{
std
::
swap
(
w
,
h
);
}
if
(
descriptor
.
batch_size_
)
{
x
->
Resize
({
descriptor
.
batch_size_
,
h
,
w
});
}
else
{
x
->
Resize
({
h
,
w
});
}
}
static
void
ReshapeXYOutIntoMatrixSequence
(
framework
::
Tensor
*
x
,
framework
::
Tensor
*
y
,
framework
::
Tensor
*
out
,
bool
trans_x
,
bool
trans_y
)
{
auto
x_dim
=
RowMatrixFromVector
(
x
->
dims
());
auto
y_dim
=
ColumnMatrixFromVector
(
y
->
dims
());
auto
mat_dim_x
=
math
::
CreateMatrixDescriptor
(
x_dim
,
0
,
trans_x
);
auto
mat_dim_y
=
math
::
CreateMatrixDescriptor
(
y_dim
,
0
,
trans_y
);
if
(
mat_dim_x
.
batch_size_
==
0
&&
mat_dim_y
.
batch_size_
==
0
)
{
out
->
Resize
({
mat_dim_x
.
height_
,
mat_dim_y
.
width_
});
}
else
{
out
->
Resize
({
std
::
max
(
mat_dim_x
.
batch_size_
,
mat_dim_y
.
batch_size_
),
mat_dim_x
.
height_
,
mat_dim_y
.
width_
});
}
ReshapeTensorIntoMatrixSequence
(
x
,
mat_dim_x
);
ReshapeTensorIntoMatrixSequence
(
y
,
mat_dim_y
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulV2GradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
MatMul
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
framework
::
Tensor
*
out
)
const
{
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
a
.
dims
(),
0
,
trans_a
);
auto
mat_dim_b
=
math
::
CreateMatrixDescriptor
(
b
.
dims
(),
0
,
trans_b
);
if
(
a
.
dims
().
size
()
==
3
&&
b
.
dims
().
size
()
<=
2
)
{
// the transpose_X must be false, if is true, the transpose cost much time
if
(
!
trans_a
)
{
mat_dim_a
.
height_
*=
mat_dim_a
.
batch_size_
;
mat_dim_a
.
batch_size_
=
0
;
}
}
blas
.
MatMul
(
a
,
mat_dim_a
,
b
,
mat_dim_b
,
static_cast
<
T
>
(
1
),
out
,
static_cast
<
T
>
(
0
));
}
void
CalcInputGrad
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
bool
is_fold_init_dims_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
bool
is_fold_init_dims_b
,
framework
::
Tensor
*
out
)
const
{
if
(
out
==
nullptr
)
return
;
bool
need_combine
=
(
a
.
dims
().
size
()
==
3
||
b
.
dims
().
size
()
==
3
)
&&
out
->
dims
().
size
()
==
2
;
if
(
!
need_combine
)
{
MatMul
(
context
,
a
,
trans_a
,
b
,
trans_b
,
out
);
}
else
{
auto
&
ctx
=
context
.
template
device_context
<
DeviceContext
>();
MatMul
(
context
,
is_fold_init_dims_a
?
FoldInitDims
(
a
)
:
FoldHeadAndLastDims
<
DeviceContext
,
T
>
(
ctx
,
a
),
trans_a
,
is_fold_init_dims_b
?
FoldInitDims
(
b
)
:
FoldHeadAndLastDims
<
DeviceContext
,
T
>
(
ctx
,
b
),
trans_b
,
out
);
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
Y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dOut
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
bool
trans_x
=
ctx
.
Attr
<
bool
>
(
"trans_x"
);
bool
trans_y
=
ctx
.
Attr
<
bool
>
(
"trans_y"
);
// auto* X = ctx.Input<Tensor>("X");
// auto* Y = ctx.Input<Tensor>("Y");
// auto* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
bool
transpose_x
=
ctx
.
Attr
<
bool
>
(
"trans_x"
);
bool
transpose_y
=
ctx
.
Attr
<
bool
>
(
"trans_y"
);
auto
x
=
*
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
y
=
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dout
=
*
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
// get dims
std
::
vector
<
std
::
int64_t
>
x_dims
=
vectorize
(
X
->
dims
());
std
::
vector
<
std
::
int64_t
>
y_dims
=
vectorize
(
Y
->
dims
());
std
::
vector
<
std
::
int64_t
>
dout_dims
=
vectorize
(
d
Out
->
dims
());
std
::
vector
<
std
::
int64_t
>
x_dims
=
vectorize
(
x
.
dims
());
std
::
vector
<
std
::
int64_t
>
y_dims
=
vectorize
(
y
.
dims
());
std
::
vector
<
std
::
int64_t
>
dout_dims
=
vectorize
(
d
out
.
dims
());
int
x_ndim
=
x_dims
.
size
();
int
y_ndim
=
y_dims
.
size
();
...
...
@@ -372,115 +511,156 @@ class MatMulV2GradKernel : public framework::OpKernel<T> {
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
// x's or y's dim = 1
//
Case1 :
x's or y's dim = 1
if
(
x_ndim
==
1
&&
y_ndim
==
1
)
{
if
(
dx
)
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
dy
)
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
d
Out
->
numel
()
==
1
)
{
DotGradFunction
<
DeviceContext
,
T
>
(
X
,
Y
,
dO
ut
,
dx
,
dy
,
ctx
);
if
(
d
out
.
numel
()
==
1
)
{
DotGradFunction
<
DeviceContext
,
T
>
(
&
x
,
&
y
,
&
do
ut
,
dx
,
dy
,
ctx
);
return
;
}
}
// It is very tricky. For this broadcast, currently using the reduce sum to
// get gradient.
if
(
x_ndim
==
1
)
{
x_dims
.
insert
(
x_dims
.
begin
()
+
0
,
1
);
x_ndim
+=
1
;
if
(
trans_x
)
dout_dims
.
push_back
(
1
);
else
dout_dims
.
insert
(
dout_dims
.
begin
()
+
ndim
-
1
,
1
);
ndim
+=
1
;
}
if
(
y_ndim
==
1
)
{
y_dims
.
push_back
(
1
);
y_ndim
+=
1
;
if
(
trans_y
)
dout_dims
.
insert
(
dout_dims
.
begin
()
+
ndim
-
1
,
1
)
;
else
dout_dims
.
push_back
(
1
);
ndim
+=
1
;
bool
is_broadcast
=
true
;
if
(
x_ndim
<=
2
||
y_ndim
<=
2
)
{
is_broadcast
=
false
;
}
else
if
(
x_ndim
!=
y_ndim
)
{
is_broadcast
=
true
;
}
else
{
is_broadcast
=
!
std
::
equal
(
x_dims
.
cbegin
(),
x_dims
.
cbegin
()
+
x_ndim
-
2
,
y_dims
.
cbegin
())
;
}
// the normal case
Tensor
dx_help
,
dy_help
;
if
(
trans_x
)
{
if
(
trans_y
)
{
// X'Y': dA = Y'G', dB = G'X'
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
Y
,
dOut
,
y_dims
,
dout_dims
,
&
dx_help
,
true
,
true
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
dOut
,
X
,
dout_dims
,
x_dims
,
&
dy_help
,
true
,
true
,
ctx
);
VLOG
(
0
)
<<
"is_broadcast: "
<<
is_broadcast
;
// Case2: no broadcast or no batch size, it aims to speed and it is same as
// matmul in old version.
if
(
!
is_broadcast
)
{
ReshapeXYOutIntoMatrixSequence
(
&
x
,
&
y
,
&
dout
,
transpose_x
,
transpose_y
);
framework
::
DDim
dx_dims
;
if
(
dx
)
{
dx_dims
=
dx
->
dims
();
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
x
.
dims
());
}
}
framework
::
DDim
dy_dims
;
if
(
dy
)
{
dy_dims
=
dy
->
dims
();
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
y
.
dims
());
}
}
if
(
transpose_x
&&
transpose_y
)
{
CalcInputGrad
(
ctx
,
y
,
true
,
true
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
ctx
,
dout
,
true
,
true
,
x
,
true
,
false
,
dy
);
}
else
if
(
transpose_x
)
{
CalcInputGrad
(
ctx
,
y
,
false
,
false
,
dout
,
true
,
false
,
dx
);
CalcInputGrad
(
ctx
,
x
,
false
,
false
,
dout
,
false
,
true
,
dy
);
}
else
if
(
transpose_y
)
{
CalcInputGrad
(
ctx
,
dout
,
false
,
false
,
y
,
false
,
true
,
dx
);
CalcInputGrad
(
ctx
,
dout
,
true
,
true
,
x
,
false
,
true
,
dy
);
}
else
{
// X'Y: dX = YG', dY = XG
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
Y
,
dOut
,
y_dims
,
dout_dims
,
&
dx_help
,
false
,
true
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
X
,
dOut
,
x_dims
,
dout_dims
,
&
dy_help
,
false
,
false
,
ctx
);
CalcInputGrad
(
ctx
,
dout
,
false
,
false
,
y
,
true
,
false
,
dx
);
CalcInputGrad
(
ctx
,
x
,
true
,
true
,
dout
,
false
,
true
,
dy
);
}
if
(
dx
)
{
if
(
dx_dims
!=
x
.
dims
())
{
dx
->
Resize
(
dx_dims
);
}
}
if
(
dy
)
{
if
(
dy_dims
!=
y
.
dims
())
{
dy
->
Resize
(
dy_dims
);
}
}
}
else
{
if
(
trans_y
)
{
// XY': dX = GY, dY = G'X
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
dOut
,
Y
,
dout_dims
,
y_dims
,
&
dx_help
,
false
,
false
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
dOut
,
X
,
dout_dims
,
x_dims
,
&
dy_help
,
true
,
false
,
ctx
);
// Case3: broadcast. It need cost much time to reduce sum for the
// broadcast and wastes the memory.
// So we should avoid the case in reality.
VLOG
(
3
)
<<
"It need cost much time to reduce sum for the broadcast and "
"wastes the memory. So we should avoid the case in reality"
;
Tensor
dx_help
,
dy_help
;
if
(
transpose_x
)
{
if
(
transpose_y
)
{
// X'Y': dA = Y'G', dB = G'X'
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
y
,
&
dout
,
y_dims
,
dout_dims
,
&
dx_help
,
true
,
true
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
dout
,
&
x
,
dout_dims
,
x_dims
,
&
dy_help
,
true
,
true
,
ctx
);
}
else
{
// X'Y: dX = YG', dY = XG
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
y
,
&
dout
,
y_dims
,
dout_dims
,
&
dx_help
,
false
,
true
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
x
,
&
dout
,
x_dims
,
dout_dims
,
&
dy_help
,
false
,
false
,
ctx
);
}
}
else
{
// XY: dX = GY', dY = X'G
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
dOut
,
Y
,
dout_dims
,
y_dims
,
&
dx_help
,
false
,
true
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
X
,
dOut
,
x_dims
,
dout_dims
,
&
dy_help
,
true
,
false
,
ctx
);
if
(
transpose_y
)
{
// XY': dX = GY, dY = G'X
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
dout
,
&
y
,
dout_dims
,
y_dims
,
&
dx_help
,
false
,
false
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
dout
,
&
x
,
dout_dims
,
x_dims
,
&
dy_help
,
true
,
false
,
ctx
);
}
else
{
// XY: dX = GY', dY = X'G
if
(
dx
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
dout
,
&
y
,
dout_dims
,
y_dims
,
&
dx_help
,
false
,
true
,
ctx
);
if
(
dy
)
MatMulFunction
<
DeviceContext
,
T
>
(
&
x
,
&
dout
,
x_dims
,
dout_dims
,
&
dy_help
,
true
,
false
,
ctx
);
}
}
}
// get help dims
const
std
::
vector
<
std
::
int64_t
>
dx_help_dims
=
vectorize
(
dx_help
.
dims
());
const
std
::
vector
<
std
::
int64_t
>
dy_help_dims
=
vectorize
(
dy_help
.
dims
());
std
::
vector
<
std
::
int64_t
>
dx_broadcast_dims
(
ndim
);
std
::
vector
<
std
::
int64_t
>
dy_broadcast_dims
(
ndim
);
std
::
fill
(
dx_broadcast_dims
.
data
(),
dx_broadcast_dims
.
data
()
+
ndim
-
x_ndim
,
1
);
std
::
fill
(
dy_broadcast_dims
.
data
(),
dy_broadcast_dims
.
data
()
+
ndim
-
y_ndim
,
1
);
std
::
copy
(
x_dims
.
data
(),
x_dims
.
data
()
+
x_ndim
,
dx_broadcast_dims
.
data
()
+
ndim
-
x_ndim
);
std
::
copy
(
y_dims
.
data
(),
y_dims
.
data
()
+
y_ndim
,
dy_broadcast_dims
.
data
()
+
ndim
-
y_ndim
);
std
::
vector
<
int
>
dx_reduce_dims
;
std
::
vector
<
int
>
dy_reduce_dims
;
for
(
int
idx
=
0
;
idx
<=
ndim
-
3
;
idx
++
)
{
if
(
dx_help_dims
[
idx
]
!=
1
&&
dx_broadcast_dims
[
idx
]
==
1
)
{
dx_reduce_dims
.
push_back
(
idx
);
// get help dims
const
std
::
vector
<
std
::
int64_t
>
dx_help_dims
=
vectorize
(
dx_help
.
dims
());
const
std
::
vector
<
std
::
int64_t
>
dy_help_dims
=
vectorize
(
dy_help
.
dims
());
std
::
vector
<
std
::
int64_t
>
dx_broadcast_dims
(
ndim
);
std
::
vector
<
std
::
int64_t
>
dy_broadcast_dims
(
ndim
);
std
::
fill
(
dx_broadcast_dims
.
data
(),
dx_broadcast_dims
.
data
()
+
ndim
-
x_ndim
,
1
);
std
::
fill
(
dy_broadcast_dims
.
data
(),
dy_broadcast_dims
.
data
()
+
ndim
-
y_ndim
,
1
);
std
::
copy
(
x_dims
.
data
(),
x_dims
.
data
()
+
x_ndim
,
dx_broadcast_dims
.
data
()
+
ndim
-
x_ndim
);
std
::
copy
(
y_dims
.
data
(),
y_dims
.
data
()
+
y_ndim
,
dy_broadcast_dims
.
data
()
+
ndim
-
y_ndim
);
std
::
vector
<
int
>
dx_reduce_dims
;
std
::
vector
<
int
>
dy_reduce_dims
;
for
(
int
idx
=
0
;
idx
<=
ndim
-
3
;
idx
++
)
{
if
(
dx_help_dims
[
idx
]
!=
1
&&
dx_broadcast_dims
[
idx
]
==
1
)
{
dx_reduce_dims
.
push_back
(
idx
);
}
if
(
dy_help_dims
[
idx
]
!=
1
&&
dy_broadcast_dims
[
idx
]
==
1
)
{
dy_reduce_dims
.
push_back
(
idx
);
}
}
// reduce sum to get grad by ReduceSum
if
(
dx
)
{
dx
->
Resize
(
dx_help
.
dims
());
ReduceSumForMatmulGrad
<
DeviceContext
,
T
>
(
&
dx_help
,
dx
,
dx_reduce_dims
,
ctx
);
dx
->
Resize
(
x
.
dims
());
}
if
(
dy_help_dims
[
idx
]
!=
1
&&
dy_broadcast_dims
[
idx
]
==
1
)
{
dy_reduce_dims
.
push_back
(
idx
);
if
(
dy
)
{
dy
->
Resize
(
dy_help
.
dims
());
ReduceSumForMatmulGrad
<
DeviceContext
,
T
>
(
&
dy_help
,
dy
,
dy_reduce_dims
,
ctx
);
dy
->
Resize
(
y
.
dims
());
}
}
// reduce sum to get grad by ReduceSum
if
(
dx
)
{
dx
->
Resize
(
dx_help
.
dims
());
ReduceSumForMatmulGrad
<
DeviceContext
,
T
>
(
&
dx_help
,
dx
,
dx_reduce_dims
,
ctx
);
dx
->
Resize
(
X
->
dims
());
}
if
(
dy
)
{
dy
->
Resize
(
dy_help
.
dims
());
ReduceSumForMatmulGrad
<
DeviceContext
,
T
>
(
&
dy_help
,
dy
,
dy_reduce_dims
,
ctx
);
dy
->
Resize
(
Y
->
dims
());
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录