未验证 提交 840d54de 编写于 作者: M mapingshuo 提交者: GitHub

add XPU support for shape op and reshape op (#27804)

上级 0a1862d1
...@@ -49,7 +49,8 @@ inline std::vector<int> get_new_shape( ...@@ -49,7 +49,8 @@ inline std::vector<int> get_new_shape(
"the element's shape must be [1]. But received the element's shape " "the element's shape must be [1]. But received the element's shape "
"is [%s]", "is [%s]",
tensor->dims())); tensor->dims()));
if (platform::is_gpu_place(tensor->place())) { if (platform::is_gpu_place(tensor->place()) ||
platform::is_xpu_place(tensor->place())) {
framework::Tensor temp; framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp); TensorCopySync(*tensor, platform::CPUPlace(), &temp);
...@@ -362,7 +363,8 @@ class ReshapeKernel { ...@@ -362,7 +363,8 @@ class ReshapeKernel {
if (shape_tensor) { if (shape_tensor) {
auto *shape_data = shape_tensor->data<int>(); auto *shape_data = shape_tensor->data<int>();
framework::Tensor cpu_shape_tensor; framework::Tensor cpu_shape_tensor;
if (platform::is_gpu_place(shape_tensor->place())) { if (platform::is_gpu_place(shape_tensor->place()) ||
platform::is_xpu_place(shape_tensor->place())) {
TensorCopySync(*shape_tensor, platform::CPUPlace(), TensorCopySync(*shape_tensor, platform::CPUPlace(),
&cpu_shape_tensor); &cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>(); shape_data = cpu_shape_tensor.data<int>();
...@@ -375,9 +377,22 @@ class ReshapeKernel { ...@@ -375,9 +377,22 @@ class ReshapeKernel {
out->Resize(out_dims); out->Resize(out_dims);
out->mutable_data(ctx.GetPlace(), in->type()); out->mutable_data(ctx.GetPlace(), in->type());
framework::TensorCopy(
*in, ctx.GetPlace(), #ifdef PADDLE_WITH_XPU
ctx.template device_context<platform::DeviceContext>(), out); if (platform::is_xpu_place(ctx.GetPlace())) {
auto &dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
xpu::memcpy_device(
dev_ctx.x_context(), out->data<void>(), in->data<void>(),
in->numel() * paddle::framework::SizeOfType(in->type()));
} else {
#endif
framework::TensorCopy(
*in, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
#ifdef PADDLE_WITH_XPU
}
#endif
out->Resize(out_dims); out->Resize(out_dims);
} }
}; };
...@@ -644,3 +659,15 @@ REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad_grad, float, ...@@ -644,3 +659,15 @@ REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad_grad, float,
ops::ReshapeDoubleGradKernel, plat::float16, ops::ReshapeDoubleGradKernel, plat::float16,
ops::ReshapeDoubleGradKernel); ops::ReshapeDoubleGradKernel);
#endif #endif
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
ops::ReshapeKernel, int, ops::ReshapeKernel,
int64_t, ops::ReshapeKernel, plat::float16,
ops::ReshapeKernel);
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
double, ops::ReshapeGradKernel, int,
ops::ReshapeGradKernel, int64_t,
ops::ReshapeGradKernel, plat::float16,
ops::ReshapeGradKernel);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/shape_op.h"
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(shape, ops::ShapeKernel<bool>, ops::ShapeKernel<int>,
ops::ShapeKernel<int64_t>, ops::ShapeKernel<float>,
ops::ShapeKernel<double>);
#endif
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
class TestReshapeOp(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
self.attrs = {"shape": self.new_shape, "use_xpu": True}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (12, 10)
self.infered_shape = (12, 10)
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place, no_check_set=['XShape'])
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ["X"], "Out")
class TestReshapeOpDimInfer1(TestReshapeOp):
def init_data(self):
self.ori_shape = (5, 25)
self.new_shape = (5, -1, 5)
self.infered_shape = (5, -1, 5)
class TestReshapeOpDimInfer2(TestReshapeOp):
def init_data(self):
self.ori_shape = (10, 2, 6)
self.new_shape = (10, 0, 3, -1)
self.infered_shape = (10, 2, 3, -1)
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
class TestReshapeOpWithInputShape(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
"Shape": np.array(
self.actual_shape, dtype="int32")
}
self.attrs = {"shape": self.new_shape, "use_xpu": True}
self.outputs = {
"Out": self.inputs["X"].reshape(self.actual_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (6, 20)
self.new_shape = (0, -1, 20)
self.actual_shape = (2, 3, 20)
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place, no_check_set=['XShape'])
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ["X"], "Out")
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
shape_tensor = []
for index, ele in enumerate(self.new_shape):
shape_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
'ShapeTensor': shape_tensor
}
self.attrs = {'shape': self.shape, "use_xpu": True}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (4, 25)
self.new_shape = (10, 10)
self.infered_shape = (10, 10)
self.shape = (-1, -1)
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place, no_check_set=['XShape'])
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ["X"], "Out")
class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
def init_data(self):
self.ori_shape = (5, 20)
self.new_shape = (5, -1, 20)
self.infered_shape = (5, -1, 20)
self.shape = (5, -1, -1)
class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
def init_data(self):
self.ori_shape = (10, 2, 6)
self.new_shape = (10, 0, 3, -1)
self.infered_shape = (10, 2, 3, -1)
self.shape = (10, 0, 3, -1)
# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
"Shape": np.array(
self.new_shape, dtype="int32")
}
self.attrs = {"use_xpu": True}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (4, 25)
self.new_shape = (10, 10)
self.infered_shape = (10, 10)
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place, no_check_set=['XShape'])
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ["X"], "Out")
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
def init_data(self):
self.ori_shape = (5, 20)
self.new_shape = (5, -1, 10)
self.infered_shape = (5, -1, 10)
self.shape = (5, -1, -1)
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
def init_data(self):
self.ori_shape = (10, 2, 6)
self.new_shape = (10, 0, 3, -1)
self.infered_shape = (10, 2, 3, -1)
self.shape = (10, 0, 3, -1)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
from paddle.fluid import core
from paddle.fluid.op import Operator
class TestShapeOp(OpTest):
def setUp(self):
self.op_type = "shape"
self.config()
self.shape = [2, 3]
input = np.zeros(self.shape)
self.inputs = {'Input': input}
self.outputs = {'Out': np.array(self.shape)}
def config(self):
self.shape = [2, 3]
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
class case1(TestShapeOp):
def config(self):
self.shape = [2]
class case2(TestShapeOp):
def config(self):
self.shape = [1, 2, 3]
class TestShapeWithSelectedRows(unittest.TestCase):
def get_places(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
if core.is_compiled_with_xpu():
places.append(core.XPUPlace(0))
return places
def check_with_place(self, place):
scope = core.Scope()
x_rows = [0, 1, 5, 4, 19]
height = 20
row_numel = 2
np_array = np.ones((len(x_rows), row_numel)).astype("float32")
# initialize input variable X
x = scope.var('X').get_selected_rows()
x.set_rows(x_rows)
x.set_height(height)
x_tensor = x.get_tensor()
x_tensor.set(np_array, place)
# initialize input variable Out
out_shape = scope.var("Out").get_tensor()
op = Operator("shape", Input="X", Out="Out")
op.run(scope, place)
out_shape = np.array(out_shape).tolist()
self.assertListEqual([5, 2], out_shape)
def test_check_output(self):
for place in self.get_places():
self.check_with_place(place)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册