提交 83d7261b 编写于 作者: Y Yu Yang

Merge branch 'develop' of github.com:baidu/Paddle into stable_elemwise_mul

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input(Labels) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto labels_dims = ctx->GetInputDim("Labels");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(labels_dims.size(), 2,
"Input(Labels)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0],
"The 1st dimension of Input(X) and Input(Labels) should "
"be equal.");
PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1],
"The 2nd dimension of Input(X) and Input(Labels) should "
"be equal.");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class SigmoidCrossEntropyWithLogitsGradOp
: public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input(Labels) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) shoudl be not null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Output(X@GRAD) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto labels_dims = ctx->GetInputDim("Labels");
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(labels_dims.size(), 2,
"Input(Labels)'s rank should be 2.");
PADDLE_ENFORCE_EQ(dout_dims.size(), 2,
"Input(Out@Grad)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0],
"The 1st dimension of Input(X) and Input(Labels) should "
"be equal.");
PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1],
"The 2nd dimension of Input(X) and Input(Labels) should "
"be equal.");
PADDLE_ENFORCE_EQ(x_dims[0], dout_dims[0],
"The 1st dimension of Input(X) and Input(Out@Grad) "
"should be equal.");
PADDLE_ENFORCE_EQ(x_dims[1], dout_dims[1],
"The 2nd dimension of Input(X) and Input(Out@Grad) "
"should be equal.");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}
};
class SigmoidCrossEntropyWithLogitsOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
SigmoidCrossEntropyWithLogitsOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
"where N is the batch size and D is the number of classes. "
"This input is a tensor of logits computed by the previous "
" operator. Logits are unscaled log probabilities given as "
"log(p/(1-p)).");
AddInput("Labels",
"(Tensor, default Tensor<float>), a 2-D tensor of the same type "
"and shape as X. This input is a tensor of probabalistic labels "
"for each logit");
AddOutput("Out",
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x D "
" of elementwise logistic losses.");
AddComment(R"DOC(
SigmoidCrossEntropyWithLogits Operator.
This measures the elementwise probability error in discrete classification tasks
in which each class is independent. This can be thought of as predicting labels
for a data-point that are not mutually exclusive. For example, a news article
can be about politics, technology or sports at the same time or none of these.
The logistic loss is given as follows:
loss = -Labels * log(sigmoid(X)) - (1 - Labels) * log(1 - sigmoid(X))
We know that sigmoid(X) = (1 / (1 + exp(-X))). By substituting this we get
loss = X - X * Labels + log(1 + exp(-X))
For stability and to prevent overflow of exp(-X) when X < 0,
we can reformulate the loss as follows:
loss = max(X, 0) - X * Labels + log(1 + exp(-abs(X)))
Both the input `X` and `Labels` can carry the LoD (Level of Details) information.
However the output only shares the LoD with input `X`.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sigmoid_cross_entropy_with_logits,
ops::SigmoidCrossEntropyWithLogitsOp,
ops::SigmoidCrossEntropyWithLogitsOpMaker,
sigmoid_cross_entropy_with_logits_grad,
ops::SigmoidCrossEntropyWithLogitsGradOp);
REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits,
ops::SigmoidCrossEntropyWithLogitsKernel<
paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits_grad,
ops::SigmoidCrossEntropyWithLogitsGradKernel<
paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits,
ops::SigmoidCrossEntropyWithLogitsKernel<
paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits_grad,
ops::SigmoidCrossEntropyWithLogitsGradKernel<
paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
// Out = max(X, 0) - X * Labels + log(1 + exp(-abs(X)))
template <typename Place, typename T>
class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &context) const override {
const framework::Tensor *X = context.Input<framework::Tensor>("X");
const framework::Tensor *Labels =
context.Input<framework::Tensor>("Labels");
framework::Tensor *Out = context.Output<framework::Tensor>("Out");
Out->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto labels = framework::EigenVector<T>::Flatten(*Labels);
auto out = framework::EigenVector<T>::Flatten(*Out);
auto place = context.GetEigenDevice<Place>();
// term1 = max(x, 0)
auto term1 = x.cwiseMax(static_cast<T>(0));
// term2 = x * labels
auto term2 = x * labels;
// term3 = log(1 + exp(-abs(x)))
auto term3 = (static_cast<T>(1) + (-(x.abs())).exp()).log();
out.device(place) = term1 - term2 + term3;
}
};
// dX = sigmoid(X) - labels
template <typename Place, typename T>
class SigmoidCrossEntropyWithLogitsGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &context) const override {
const framework::Tensor *X = context.Input<framework::Tensor>("X");
const framework::Tensor *Labels =
context.Input<framework::Tensor>("Labels");
const framework::Tensor *dOut =
context.Input<framework::Tensor>(framework::GradVarName("Out"));
framework::Tensor *dX =
context.Output<framework::Tensor>(framework::GradVarName("X"));
dX->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto labels = framework::EigenVector<T>::Flatten(*Labels);
auto dout = framework::EigenVector<T>::Flatten(*dOut);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
auto sigmoid_x = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
dx.device(place) = dout * (sigmoid_x - labels);
}
};
} // namespace operators
} // namespace paddle
import numpy as np
from op_test import OpTest
from scipy.special import logit
from scipy.special import expit
class TestSigmoidCrossEntropyWithLogitsOp1(OpTest):
'''Test sigmoid_cross_entropy_with_logit_op with binary labels
'''
def setUp(self):
self.op_type = "sigmoid_cross_entropy_with_logits"
batch_size = 64
num_classes = 20
self.inputs = {
'X': logit(
np.random.uniform(0, 1, (batch_size, num_classes))
.astype("float32")),
'Labels': np.random.randint(0, 2, (batch_size, num_classes))
.astype("float32")
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Labels * -log(sigmoid(X)) + (1 - labels) * -log(1 - sigmoid(X))
sigmoid_X = expit(self.inputs['X'])
term1 = self.inputs['Labels'] * np.log(sigmoid_X)
term2 = (1 - self.inputs['Labels']) * np.log(1 - sigmoid_X)
self.outputs = {'Out': -term1 - term2}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestSigmoidCrossEntropyWithLogitsOp2(OpTest):
'''Test sigmoid_cross_entropy_with_logit_op with probabalistic labels
'''
def setUp(self):
self.op_type = "sigmoid_cross_entropy_with_logits"
batch_size = 64
num_classes = 20
self.inputs = {
'X': logit(
np.random.uniform(0, 1, (batch_size, num_classes))
.astype("float32")),
'Labels': np.random.uniform(0, 1, (batch_size, num_classes))
.astype("float32")
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Labels * -log(sigmoid(X)) + (1 - labels) * -log(1 - sigmoid(X))
sigmoid_X = expit(self.inputs['X'])
term1 = self.inputs['Labels'] * np.log(sigmoid_X)
term2 = (1 - self.inputs['Labels']) * np.log(1 - sigmoid_X)
self.outputs = {'Out': -term1 - term2}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册