Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
83af1b3b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
83af1b3b
编写于
9月 10, 2018
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move analyzer_rnn1_test out of analyzer_test
上级
5023530a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
314 addition
and
282 deletion
+314
-282
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+6
-2
paddle/fluid/inference/analysis/analyzer_rnn1_tester.cc
paddle/fluid/inference/analysis/analyzer_rnn1_tester.cc
+306
-0
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+2
-280
未找到文件。
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
83af1b3b
...
@@ -35,11 +35,15 @@ function (inference_analysis_test TARGET)
...
@@ -35,11 +35,15 @@ function (inference_analysis_test TARGET)
cc_test
(
${
TARGET
}
cc_test
(
${
TARGET
}
SRCS
"
${
analysis_test_SRCS
}
"
SRCS
"
${
analysis_test_SRCS
}
"
DEPS analysis pass
${
GLOB_PASS_LIB
}
${
analysis_test_EXTRA_DEPS
}
DEPS analysis pass
${
GLOB_PASS_LIB
}
${
analysis_test_EXTRA_DEPS
}
ARGS
--inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
${
mem_opt
}
${
analysis_test_ARGS
}
)
ARGS
${
mem_opt
}
${
analysis_test_ARGS
}
)
set_tests_properties
(
${
TARGET
}
PROPERTIES DEPENDS test_word2vec
)
set_tests_properties
(
${
TARGET
}
PROPERTIES DEPENDS test_word2vec
)
endif
(
WITH_TESTING
)
endif
(
WITH_TESTING
)
endfunction
(
inference_analysis_test
)
endfunction
(
inference_analysis_test
)
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
)
function
(
inference_download_and_uncompress install_dir url gz_filename
)
function
(
inference_download_and_uncompress install_dir url gz_filename
)
message
(
STATUS
"Download inference test stuff
${
gz_filename
}
from
${
url
}
"
)
message
(
STATUS
"Download inference test stuff
${
gz_filename
}
from
${
url
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
install_dir
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
install_dir
}
"
)
...
@@ -56,7 +60,7 @@ if (NOT EXISTS ${RNN1_INSTALL_DIR} AND WITH_TESTING)
...
@@ -56,7 +60,7 @@ if (NOT EXISTS ${RNN1_INSTALL_DIR} AND WITH_TESTING)
inference_download_and_uncompress
(
${
RNN1_INSTALL_DIR
}
${
RNN1_DATA_URL
}
"rnn1%2Fdata.txt.tar.gz"
)
inference_download_and_uncompress
(
${
RNN1_INSTALL_DIR
}
${
RNN1_DATA_URL
}
"rnn1%2Fdata.txt.tar.gz"
)
endif
()
endif
()
inference_analysis_test
(
test_analyzer
SRCS analyzer
_tester.cc
inference_analysis_test
(
test_analyzer
_rnn1 SRCS analyzer_rnn1
_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
ARGS --infer_model=
${
RNN1_INSTALL_DIR
}
/model
ARGS --infer_model=
${
RNN1_INSTALL_DIR
}
/model
--infer_data=
${
RNN1_INSTALL_DIR
}
/data.txt
)
--infer_data=
${
RNN1_INSTALL_DIR
}
/data.txt
)
...
...
paddle/fluid/inference/analysis/analyzer_rnn1_tester.cc
0 → 100644
浏览文件 @
83af1b3b
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
DEFINE_string
(
infer_model
,
""
,
"model path"
);
DEFINE_string
(
infer_data
,
""
,
"data path"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
namespace
paddle
{
namespace
inference
{
using
namespace
framework
;
// NOLINT
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
link_step_data_all
;
std
::
vector
<
std
::
vector
<
float
>>
week_data_all
,
minute_data_all
;
std
::
vector
<
size_t
>
lod1
,
lod2
,
lod3
;
std
::
vector
<
std
::
vector
<
float
>>
rnn_link_data
,
rnn_week_datas
,
rnn_minute_datas
;
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
Load
(
path
);
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
link_step_data_all
.
size
())
{
data
.
link_step_data_all
.
assign
(
link_step_data_all
.
begin
()
+
batch_iter
,
link_step_data_all
.
begin
()
+
batch_end
);
data
.
week_data_all
.
assign
(
week_data_all
.
begin
()
+
batch_iter
,
week_data_all
.
begin
()
+
batch_end
);
data
.
minute_data_all
.
assign
(
minute_data_all
.
begin
()
+
batch_iter
,
minute_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod1
.
push_back
(
0
);
data
.
lod2
.
push_back
(
0
);
data
.
lod3
.
push_back
(
0
);
CHECK
(
!
data
.
link_step_data_all
.
empty
())
<<
"empty"
;
CHECK
(
!
data
.
week_data_all
.
empty
());
CHECK
(
!
data
.
minute_data_all
.
empty
());
CHECK_EQ
(
data
.
link_step_data_all
.
size
(),
data
.
week_data_all
.
size
());
CHECK_EQ
(
data
.
minute_data_all
.
size
(),
data
.
link_step_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
link_step_data_all
.
size
();
j
++
)
{
for
(
const
auto
&
d
:
data
.
link_step_data_all
[
j
])
{
data
.
rnn_link_data
.
push_back
(
d
);
}
data
.
rnn_week_datas
.
push_back
(
data
.
week_data_all
[
j
]);
data
.
rnn_minute_datas
.
push_back
(
data
.
minute_data_all
[
j
]);
// calculate lod
data
.
lod1
.
push_back
(
data
.
lod1
.
back
()
+
data
.
link_step_data_all
[
j
].
size
());
data
.
lod3
.
push_back
(
data
.
lod3
.
back
()
+
1
);
for
(
size_t
i
=
1
;
i
<
data
.
link_step_data_all
[
j
].
size
()
+
1
;
i
++
)
{
data
.
lod2
.
push_back
(
data
.
lod2
.
back
()
+
data
.
link_step_data_all
[
j
].
size
());
}
}
}
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
int
num_lines
=
0
;
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
':'
,
&
data
);
std
::
vector
<
std
::
vector
<
float
>>
link_step_data
;
std
::
vector
<
std
::
string
>
link_datas
;
split
(
data
[
0
],
'|'
,
&
link_datas
);
for
(
auto
&
step_data
:
link_datas
)
{
std
::
vector
<
float
>
tmp
;
split_to_float
(
step_data
,
','
,
&
tmp
);
link_step_data
.
push_back
(
tmp
);
}
// load week data
std
::
vector
<
float
>
week_data
;
split_to_float
(
data
[
2
],
','
,
&
week_data
);
// load minute data
std
::
vector
<
float
>
minute_data
;
split_to_float
(
data
[
1
],
','
,
&
minute_data
);
link_step_data_all
.
push_back
(
std
::
move
(
link_step_data
));
week_data_all
.
push_back
(
std
::
move
(
week_data
));
minute_data_all
.
push_back
(
std
::
move
(
minute_data
));
}
}
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
PaddleTensor
lod_attention_tensor
,
init_zero_tensor
,
lod_tensor_tensor
,
week_tensor
,
minute_tensor
;
lod_attention_tensor
.
name
=
"data_lod_attention"
;
init_zero_tensor
.
name
=
"cell_init"
;
lod_tensor_tensor
.
name
=
"data"
;
week_tensor
.
name
=
"week"
;
minute_tensor
.
name
=
"minute"
;
auto
one_batch
=
data
->
NextBatch
();
std
::
vector
<
int
>
rnn_link_data_shape
(
{
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
front
().
size
())});
lod_attention_tensor
.
shape
.
assign
({
1
,
2
});
lod_attention_tensor
.
lod
.
assign
({
one_batch
.
lod1
,
one_batch
.
lod2
});
init_zero_tensor
.
shape
.
assign
({
batch_size
,
15
});
init_zero_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
lod_tensor_tensor
.
shape
=
rnn_link_data_shape
;
lod_tensor_tensor
.
lod
.
assign
({
one_batch
.
lod1
});
// clang-format off
week_tensor
.
shape
.
assign
(
{
static_cast
<
int
>
(
one_batch
.
rnn_week_datas
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_week_datas
.
front
().
size
())});
week_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
minute_tensor
.
shape
.
assign
(
{
static_cast
<
int
>
(
one_batch
.
rnn_minute_datas
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_minute_datas
.
front
().
size
())});
minute_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
// clang-format on
// assign data
TensorAssignData
<
float
>
(
&
lod_attention_tensor
,
std
::
vector
<
std
::
vector
<
float
>>
({{
0
,
0
}}));
std
::
vector
<
float
>
tmp_zeros
(
batch_size
*
15
,
0.
);
TensorAssignData
<
float
>
(
&
init_zero_tensor
,
{
tmp_zeros
});
TensorAssignData
<
float
>
(
&
lod_tensor_tensor
,
one_batch
.
rnn_link_data
);
TensorAssignData
<
float
>
(
&
week_tensor
,
one_batch
.
rnn_week_datas
);
TensorAssignData
<
float
>
(
&
minute_tensor
,
one_batch
.
rnn_minute_datas
);
// Set inputs.
auto
init_zero_tensor1
=
init_zero_tensor
;
init_zero_tensor1
.
name
=
"hidden_init"
;
input_slots
->
assign
({
week_tensor
,
init_zero_tensor
,
minute_tensor
,
init_zero_tensor1
,
lod_attention_tensor
,
lod_tensor_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
}
}
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base_outputs
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
&
out
=
outputs
[
i
];
auto
&
base_out
=
base_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
base_data
=
static_cast
<
float
*>
(
base_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
base_data
[
i
],
1e-3
);
}
}
}
// Test with a really complicate model.
void
TestRNN1Prediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
AnalysisConfig
config
;
config
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_model
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
config
.
enable_ir_optim
=
activate_ir
;
PADDLE_ENFORCE
(
config
.
ir_mode
==
AnalysisConfig
::
IrPassMode
::
kExclude
);
// default
config
.
ir_passes
.
clear
();
// Do not exclude any pass.
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
auto
base_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
,
base_outputs
;
base_predictor
->
Run
(
input_slots
,
&
base_outputs
);
if
(
num_threads
==
1
)
{
// Prepare inputs.
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
1
,
0
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
}
else
{
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
predictors
.
emplace_back
(
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
));
}
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local input_slots and outputs.
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictors
[
tid
]
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
num_threads
,
tid
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
});
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
threads
[
i
].
join
();
}
}
if
(
use_analysis
&&
activate_ir
)
{
AnalysisPredictor
*
analysis_predictor
=
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
auto
&
fuse_statis
=
analysis_predictor
->
analysis_argument
()
.
Get
<
std
::
unordered_map
<
std
::
string
,
int
>>
(
framework
::
ir
::
kFuseStatisAttr
);
for
(
auto
&
item
:
fuse_statis
)
{
LOG
(
INFO
)
<<
"fused "
<<
item
.
first
<<
" "
<<
item
.
second
;
}
int
num_ops
=
0
;
for
(
auto
&
node
:
analysis_predictor
->
analysis_argument
().
main_dfg
->
nodes
.
nodes
())
{
if
(
node
->
IsFunction
())
{
++
num_ops
;
}
}
LOG
(
INFO
)
<<
"has num ops: "
<<
num_ops
;
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
1
);
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_nobias_lstm_fuse"
),
2
);
// bi-directional LSTM
EXPECT_EQ
(
fuse_statis
.
at
(
"seq_concat_fc_fuse"
),
1
);
EXPECT_EQ
(
num_ops
,
13
);
// After graph optimization, only 13 operators exists.
}
}
// Inference with analysis and IR, easy for profiling independently.
TEST
(
Analyzer
,
rnn1
)
{
TestRNN1Prediction
(
true
,
true
,
FLAGS_num_threads
);
}
// Other unit-tests of RNN1, test different options of use_analysis,
// activate_ir and multi-threads.
TEST
(
Analyzer
,
RNN_tests
)
{
int
num_threads
[
2
]
=
{
1
,
4
};
for
(
auto
i
:
num_threads
)
{
// Directly infer with the original model.
TestRNN1Prediction
(
false
,
false
,
i
);
// Inference with the original model with the analysis turned on, the
// analysis
// module will transform the program to a data flow graph.
TestRNN1Prediction
(
true
,
false
,
i
);
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
TestRNN1Prediction
(
true
,
true
,
i
);
}
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
83af1b3b
...
@@ -16,21 +16,9 @@
...
@@ -16,21 +16,9 @@
#include <google/protobuf/text_format.h>
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
DEFINE_string
(
infer_model
,
""
,
"model path"
);
DEFINE_string
(
infer_data
,
""
,
"data path"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
@@ -91,274 +79,8 @@ void TestWord2vecPrediction(const std::string &model_path) {
...
@@ -91,274 +79,8 @@ void TestWord2vecPrediction(const std::string &model_path) {
}
}
}
}
namespace
{
TEST
(
Analyzer
,
word2vec_without_analysis
)
{
TestWord2vecPrediction
(
FLAGS_inference_model_dir
);
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
link_step_data_all
;
std
::
vector
<
std
::
vector
<
float
>>
week_data_all
,
minute_data_all
;
std
::
vector
<
size_t
>
lod1
,
lod2
,
lod3
;
std
::
vector
<
std
::
vector
<
float
>>
rnn_link_data
,
rnn_week_datas
,
rnn_minute_datas
;
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
Load
(
path
);
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
link_step_data_all
.
size
())
{
data
.
link_step_data_all
.
assign
(
link_step_data_all
.
begin
()
+
batch_iter
,
link_step_data_all
.
begin
()
+
batch_end
);
data
.
week_data_all
.
assign
(
week_data_all
.
begin
()
+
batch_iter
,
week_data_all
.
begin
()
+
batch_end
);
data
.
minute_data_all
.
assign
(
minute_data_all
.
begin
()
+
batch_iter
,
minute_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod1
.
push_back
(
0
);
data
.
lod2
.
push_back
(
0
);
data
.
lod3
.
push_back
(
0
);
CHECK
(
!
data
.
link_step_data_all
.
empty
())
<<
"empty"
;
CHECK
(
!
data
.
week_data_all
.
empty
());
CHECK
(
!
data
.
minute_data_all
.
empty
());
CHECK_EQ
(
data
.
link_step_data_all
.
size
(),
data
.
week_data_all
.
size
());
CHECK_EQ
(
data
.
minute_data_all
.
size
(),
data
.
link_step_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
link_step_data_all
.
size
();
j
++
)
{
for
(
const
auto
&
d
:
data
.
link_step_data_all
[
j
])
{
data
.
rnn_link_data
.
push_back
(
d
);
}
data
.
rnn_week_datas
.
push_back
(
data
.
week_data_all
[
j
]);
data
.
rnn_minute_datas
.
push_back
(
data
.
minute_data_all
[
j
]);
// calculate lod
data
.
lod1
.
push_back
(
data
.
lod1
.
back
()
+
data
.
link_step_data_all
[
j
].
size
());
data
.
lod3
.
push_back
(
data
.
lod3
.
back
()
+
1
);
for
(
size_t
i
=
1
;
i
<
data
.
link_step_data_all
[
j
].
size
()
+
1
;
i
++
)
{
data
.
lod2
.
push_back
(
data
.
lod2
.
back
()
+
data
.
link_step_data_all
[
j
].
size
());
}
}
}
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
int
num_lines
=
0
;
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
':'
,
&
data
);
std
::
vector
<
std
::
vector
<
float
>>
link_step_data
;
std
::
vector
<
std
::
string
>
link_datas
;
split
(
data
[
0
],
'|'
,
&
link_datas
);
for
(
auto
&
step_data
:
link_datas
)
{
std
::
vector
<
float
>
tmp
;
split_to_float
(
step_data
,
','
,
&
tmp
);
link_step_data
.
push_back
(
tmp
);
}
// load week data
std
::
vector
<
float
>
week_data
;
split_to_float
(
data
[
2
],
','
,
&
week_data
);
// load minute data
std
::
vector
<
float
>
minute_data
;
split_to_float
(
data
[
1
],
','
,
&
minute_data
);
link_step_data_all
.
push_back
(
std
::
move
(
link_step_data
));
week_data_all
.
push_back
(
std
::
move
(
week_data
));
minute_data_all
.
push_back
(
std
::
move
(
minute_data
));
}
}
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
PaddleTensor
lod_attention_tensor
,
init_zero_tensor
,
lod_tensor_tensor
,
week_tensor
,
minute_tensor
;
lod_attention_tensor
.
name
=
"data_lod_attention"
;
init_zero_tensor
.
name
=
"cell_init"
;
lod_tensor_tensor
.
name
=
"data"
;
week_tensor
.
name
=
"week"
;
minute_tensor
.
name
=
"minute"
;
auto
one_batch
=
data
->
NextBatch
();
std
::
vector
<
int
>
rnn_link_data_shape
(
{
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_link_data
.
front
().
size
())});
lod_attention_tensor
.
shape
.
assign
({
1
,
2
});
lod_attention_tensor
.
lod
.
assign
({
one_batch
.
lod1
,
one_batch
.
lod2
});
init_zero_tensor
.
shape
.
assign
({
batch_size
,
15
});
init_zero_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
lod_tensor_tensor
.
shape
=
rnn_link_data_shape
;
lod_tensor_tensor
.
lod
.
assign
({
one_batch
.
lod1
});
// clang-format off
week_tensor
.
shape
.
assign
(
{
static_cast
<
int
>
(
one_batch
.
rnn_week_datas
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_week_datas
.
front
().
size
())});
week_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
minute_tensor
.
shape
.
assign
(
{
static_cast
<
int
>
(
one_batch
.
rnn_minute_datas
.
size
()),
static_cast
<
int
>
(
one_batch
.
rnn_minute_datas
.
front
().
size
())});
minute_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
// clang-format on
// assign data
TensorAssignData
<
float
>
(
&
lod_attention_tensor
,
std
::
vector
<
std
::
vector
<
float
>>
({{
0
,
0
}}));
std
::
vector
<
float
>
tmp_zeros
(
batch_size
*
15
,
0.
);
TensorAssignData
<
float
>
(
&
init_zero_tensor
,
{
tmp_zeros
});
TensorAssignData
<
float
>
(
&
lod_tensor_tensor
,
one_batch
.
rnn_link_data
);
TensorAssignData
<
float
>
(
&
week_tensor
,
one_batch
.
rnn_week_datas
);
TensorAssignData
<
float
>
(
&
minute_tensor
,
one_batch
.
rnn_minute_datas
);
// Set inputs.
auto
init_zero_tensor1
=
init_zero_tensor
;
init_zero_tensor1
.
name
=
"hidden_init"
;
input_slots
->
assign
({
week_tensor
,
init_zero_tensor
,
minute_tensor
,
init_zero_tensor1
,
lod_attention_tensor
,
lod_tensor_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
}
}
}
// namespace
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base_outputs
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
&
out
=
outputs
[
i
];
auto
&
base_out
=
base_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
base_data
=
static_cast
<
float
*>
(
base_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
base_data
[
i
],
1e-3
);
}
}
}
// Test with a really complicate model.
void
TestRNN1Prediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
AnalysisConfig
config
;
config
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_model
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
config
.
enable_ir_optim
=
activate_ir
;
PADDLE_ENFORCE
(
config
.
ir_mode
==
AnalysisConfig
::
IrPassMode
::
kExclude
);
// default
config
.
ir_passes
.
clear
();
// Do not exclude any pass.
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
auto
base_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
,
base_outputs
;
base_predictor
->
Run
(
input_slots
,
&
base_outputs
);
if
(
num_threads
==
1
)
{
// Prepare inputs.
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
1
,
0
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
}
else
{
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
predictors
.
emplace_back
(
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
));
}
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local input_slots and outputs.
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictors
[
tid
]
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
num_threads
,
tid
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
});
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
threads
[
i
].
join
();
}
}
if
(
use_analysis
&&
activate_ir
)
{
AnalysisPredictor
*
analysis_predictor
=
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
auto
&
fuse_statis
=
analysis_predictor
->
analysis_argument
()
.
Get
<
std
::
unordered_map
<
std
::
string
,
int
>>
(
framework
::
ir
::
kFuseStatisAttr
);
for
(
auto
&
item
:
fuse_statis
)
{
LOG
(
INFO
)
<<
"fused "
<<
item
.
first
<<
" "
<<
item
.
second
;
}
int
num_ops
=
0
;
for
(
auto
&
node
:
analysis_predictor
->
analysis_argument
().
main_dfg
->
nodes
.
nodes
())
{
if
(
node
->
IsFunction
())
{
++
num_ops
;
}
}
LOG
(
INFO
)
<<
"has num ops: "
<<
num_ops
;
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
1
);
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_nobias_lstm_fuse"
),
2
);
// bi-directional LSTM
EXPECT_EQ
(
fuse_statis
.
at
(
"seq_concat_fc_fuse"
),
1
);
EXPECT_EQ
(
num_ops
,
13
);
// After graph optimization, only 13 operators exists.
}
}
// Inference with analysis and IR, easy for profiling independently.
TEST
(
Analyzer
,
rnn1
)
{
TestRNN1Prediction
(
true
,
true
,
FLAGS_num_threads
);
}
// Other unit-tests of RNN1, test different options of use_analysis,
// activate_ir and multi-threads.
TEST
(
Analyzer
,
RNN_tests
)
{
int
num_threads
[
2
]
=
{
1
,
4
};
for
(
auto
i
:
num_threads
)
{
// Directly infer with the original model.
TestRNN1Prediction
(
false
,
false
,
i
);
// Inference with the original model with the analysis turned on, the
// analysis
// module will transform the program to a data flow graph.
TestRNN1Prediction
(
true
,
false
,
i
);
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
TestRNN1Prediction
(
true
,
true
,
i
);
}
}
}
}
// namespace analysis
}
// namespace analysis
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录