Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
832b0a15
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
832b0a15
编写于
9月 30, 2022
作者:
光明和真理
提交者:
GitHub
9月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add_fluid_mluop_yolo_box (#46573)
上级
d16360c8
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
476 addition
and
1 deletion
+476
-1
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+2
-1
paddle/fluid/operators/detection/yolo_box_op_mlu.cc
paddle/fluid/operators/detection/yolo_box_op_mlu.cc
+137
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+40
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+21
-0
python/paddle/fluid/tests/unittests/mlu/test_yolo_box_op_mlu.py
.../paddle/fluid/tests/unittests/mlu/test_yolo_box_op_mlu.py
+276
-0
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
832b0a15
...
...
@@ -47,6 +47,7 @@ elseif(WITH_MLU)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op_mlu.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc yolo_box_op_mlu.cc
)
elseif
(
WITH_ASCEND_CL
)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op_npu.cc
)
...
...
@@ -55,6 +56,7 @@ else()
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op.cu
)
detection_library
(
prior_box_op SRCS prior_box_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc
)
# detection_library(generate_proposals_v2_op SRCS generate_proposals_v2_op.cc)
endif
()
...
...
@@ -73,7 +75,6 @@ detection_library(locality_aware_nms_op SRCS locality_aware_nms_op.cc DEPS gpc)
detection_library
(
matrix_nms_op SRCS matrix_nms_op.cc DEPS gpc
)
detection_library
(
box_clip_op SRCS box_clip_op.cc box_clip_op.cu
)
detection_library
(
yolov3_loss_op SRCS yolov3_loss_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc
)
detection_library
(
box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc
box_decoder_and_assign_op.cu
)
detection_library
(
sigmoid_focal_loss_op SRCS sigmoid_focal_loss_op.cc
...
...
paddle/fluid/operators/detection/yolo_box_op_mlu.cc
0 → 100644
浏览文件 @
832b0a15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
YoloBoxMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
img_size
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Scores"
);
const
std
::
vector
<
int
>
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
auto
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
auto
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
auto
clip_bbox
=
ctx
.
Attr
<
bool
>
(
"clip_bbox"
);
auto
scale
=
ctx
.
Attr
<
float
>
(
"scale_x_y"
);
auto
iou_aware
=
ctx
.
Attr
<
bool
>
(
"iou_aware"
);
auto
iou_aware_factor
=
ctx
.
Attr
<
float
>
(
"iou_aware_factor"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
int64_t
size
=
anchors
.
size
();
auto
dim_x
=
x
->
dims
();
int
n
=
dim_x
[
0
];
int
s
=
anchor_num
;
int
h
=
dim_x
[
2
];
int
w
=
dim_x
[
3
];
// The output of mluOpYoloBox: A 4-D tensor with shape [N, anchor_num, 4,
// H*W], the coordinates of boxes, and a 4-D tensor with shape [N,
// anchor_num, :attr:`class_num`, H*W], the classification scores of boxes.
std
::
vector
<
int64_t
>
boxes_dim_mluops
({
n
,
s
,
4
,
h
*
w
});
std
::
vector
<
int64_t
>
scores_dim_mluops
({
n
,
s
,
class_num
,
h
*
w
});
// In Paddle framework: A 3-D tensor with shape [N, M, 4], the coordinates
// of boxes, and a 3-D tensor with shape [N, M, :attr:`class_num`], the
// classification scores of boxes.
std
::
vector
<
int64_t
>
boxes_out_dim
({
n
,
s
,
h
*
w
,
4
});
std
::
vector
<
int64_t
>
scores_out_dim
({
n
,
s
,
h
*
w
,
class_num
});
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MLUDeviceContext
>();
phi
::
DenseTensor
boxes_tensor_mluops
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
n
,
s
,
4
,
h
*
w
},
dev_ctx
);
phi
::
DenseTensor
scores_tensor_mluops
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
n
,
s
,
class_num
,
h
*
w
},
dev_ctx
);
MLUOpTensorDesc
boxes_trans_desc_mluops
(
4
,
boxes_dim_mluops
.
data
(),
ToMluOpDataType
<
T
>
());
MLUCnnlTensorDesc
boxes_trans_desc_cnnl
(
4
,
boxes_dim_mluops
.
data
(),
ToCnnlDataType
<
T
>
());
MLUOpTensorDesc
scores_trans_desc_mluops
(
4
,
scores_dim_mluops
.
data
(),
ToMluOpDataType
<
T
>
());
MLUCnnlTensorDesc
scores_trans_desc_cnnl
(
4
,
scores_dim_mluops
.
data
(),
ToCnnlDataType
<
T
>
());
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
scores
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
0
),
boxes
);
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
0
),
scores
);
MLUOpTensorDesc
x_desc
(
*
x
,
MLUOP_LAYOUT_ARRAY
,
ToMluOpDataType
<
T
>
());
MLUOpTensorDesc
img_size_desc
(
*
img_size
,
MLUOP_LAYOUT_ARRAY
,
ToMluOpDataType
<
int32_t
>
());
Tensor
anchors_temp
(
framework
::
TransToPhiDataType
(
VT
::
INT32
));
anchors_temp
.
Resize
({
size
});
paddle
::
framework
::
TensorFromVector
(
anchors
,
ctx
.
device_context
(),
&
anchors_temp
);
MLUOpTensorDesc
anchors_desc
(
anchors_temp
);
MLUCnnlTensorDesc
boxes_desc_cnnl
(
4
,
boxes_out_dim
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
scores_desc_cnnl
(
4
,
scores_out_dim
.
data
(),
ToCnnlDataType
<
T
>
());
MLUOP
::
OpYoloBox
(
ctx
,
x_desc
.
get
(),
GetBasePtr
(
x
),
img_size_desc
.
get
(),
GetBasePtr
(
img_size
),
anchors_desc
.
get
(),
GetBasePtr
(
&
anchors_temp
),
class_num
,
conf_thresh
,
downsample_ratio
,
clip_bbox
,
scale
,
iou_aware
,
iou_aware_factor
,
boxes_trans_desc_mluops
.
get
(),
GetBasePtr
(
&
boxes_tensor_mluops
),
scores_trans_desc_mluops
.
get
(),
GetBasePtr
(
&
scores_tensor_mluops
));
const
std
::
vector
<
int
>
perm
=
{
0
,
1
,
3
,
2
};
// transpose the boxes from [N, S, 4, H*W] to [N, S, H*W, 4]
MLUCnnl
::
Transpose
(
ctx
,
perm
,
4
,
boxes_trans_desc_cnnl
.
get
(),
GetBasePtr
(
&
boxes_tensor_mluops
),
boxes_desc_cnnl
.
get
(),
GetBasePtr
(
boxes
));
// transpose the scores from [N, S, class_num, H*W] to [N, S, H*W,
// class_num]
MLUCnnl
::
Transpose
(
ctx
,
perm
,
4
,
scores_trans_desc_cnnl
.
get
(),
GetBasePtr
(
&
scores_tensor_mluops
),
scores_desc_cnnl
.
get
(),
GetBasePtr
(
scores
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
yolo_box
,
ops
::
YoloBoxMLUKernel
<
float
>
);
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
832b0a15
...
...
@@ -5418,5 +5418,45 @@ MLURNNDesc::~MLURNNDesc() {
diff_x
));
}
/* static */
void
MLUOP
::
OpYoloBox
(
const
ExecutionContext
&
ctx
,
const
mluOpTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
mluOpTensorDescriptor_t
img_size_desc
,
const
void
*
img_size
,
const
mluOpTensorDescriptor_t
anchors_desc
,
const
void
*
anchors
,
const
int
class_num
,
const
float
conf_thresh
,
const
int
downsample_ratio
,
const
bool
clip_bbox
,
const
float
scale
,
const
bool
iou_aware
,
const
float
iou_aware_factor
,
const
mluOpTensorDescriptor_t
boxes_desc
,
void
*
boxes
,
const
mluOpTensorDescriptor_t
scores_desc
,
void
*
scores
)
{
mluOpHandle_t
handle
=
GetMLUOpHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
mluOpYoloBox
(
handle
,
x_desc
,
x
,
img_size_desc
,
img_size
,
anchors_desc
,
anchors
,
class_num
,
conf_thresh
,
downsample_ratio
,
clip_bbox
,
scale
,
iou_aware
,
iou_aware_factor
,
boxes_desc
,
boxes
,
scores_desc
,
scores
));
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
832b0a15
...
...
@@ -2292,6 +2292,27 @@ class MLUCnnl {
void
*
diff_x
);
};
class
MLUOP
{
public:
static
void
OpYoloBox
(
const
ExecutionContext
&
ctx
,
const
mluOpTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
mluOpTensorDescriptor_t
img_size_desc
,
const
void
*
img_size
,
const
mluOpTensorDescriptor_t
anchors_desc
,
const
void
*
anchors
,
const
int
class_num
,
const
float
conf_thresh
,
const
int
downsample_ratio
,
const
bool
clip_bbox
,
const
float
scale
,
const
bool
iou_aware
,
const
float
iou_aware_factor
,
const
mluOpTensorDescriptor_t
boxes_desc
,
void
*
boxes
,
const
mluOpTensorDescriptor_t
scores_desc
,
void
*
scores
);
};
const
std
::
map
<
const
std
::
string
,
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>>
TransPermMap
=
{
// trans_mode, (forward_perm, backward_perm)
...
...
python/paddle/fluid/tests/unittests/mlu/test_yolo_box_op_mlu.py
0 → 100644
浏览文件 @
832b0a15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
from
paddle.fluid
import
core
import
paddle.fluid
as
fluid
from
paddle.fluid.op
import
Operator
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
def
sigmoid
(
x
):
return
(
1.0
/
(
1.0
+
np
.
exp
(((
-
1.0
)
*
x
))))
def
YoloBox
(
x
,
img_size
,
attrs
):
(
n
,
c
,
h
,
w
)
=
x
.
shape
anchors
=
attrs
[
'anchors'
]
an_num
=
int
((
len
(
anchors
)
//
2
))
class_num
=
attrs
[
'class_num'
]
conf_thresh
=
attrs
[
'conf_thresh'
]
downsample
=
attrs
[
'downsample_ratio'
]
clip_bbox
=
attrs
[
'clip_bbox'
]
scale_x_y
=
attrs
[
'scale_x_y'
]
iou_aware
=
attrs
[
'iou_aware'
]
iou_aware_factor
=
attrs
[
'iou_aware_factor'
]
bias_x_y
=
((
-
0.5
)
*
(
scale_x_y
-
1.0
))
input_h
=
(
downsample
*
h
)
input_w
=
(
downsample
*
w
)
if
iou_aware
:
ioup
=
x
[:,
:
an_num
,
:,
:]
ioup
=
np
.
expand_dims
(
ioup
,
axis
=
(
-
1
))
x
=
x
[:,
an_num
:,
:,
:]
x
=
x
.
reshape
((
n
,
an_num
,
(
5
+
class_num
),
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
pred_box
[:,
:,
:,
:,
0
]
=
((
(
grid_x
+
(
sigmoid
(
pred_box
[:,
:,
:,
:,
0
])
*
scale_x_y
))
+
bias_x_y
)
/
w
)
pred_box
[:,
:,
:,
:,
1
]
=
((
(
grid_y
+
(
sigmoid
(
pred_box
[:,
:,
:,
:,
1
])
*
scale_x_y
))
+
bias_x_y
)
/
h
)
anchors
=
[(
anchors
[
i
],
anchors
[(
i
+
1
)])
for
i
in
range
(
0
,
len
(
anchors
),
2
)]
anchors_s
=
np
.
array
([((
an_w
/
input_w
),
(
an_h
/
input_h
))
for
(
an_w
,
an_h
)
in
anchors
])
anchor_w
=
anchors_s
[:,
0
:
1
].
reshape
((
1
,
an_num
,
1
,
1
))
anchor_h
=
anchors_s
[:,
1
:
2
].
reshape
((
1
,
an_num
,
1
,
1
))
pred_box
[:,
:,
:,
:,
2
]
=
(
np
.
exp
(
pred_box
[:,
:,
:,
:,
2
])
*
anchor_w
)
pred_box
[:,
:,
:,
:,
3
]
=
(
np
.
exp
(
pred_box
[:,
:,
:,
:,
3
])
*
anchor_h
)
if
iou_aware
:
pred_conf
=
((
sigmoid
(
x
[:,
:,
:,
:,
4
:
5
])
**
(
1
-
iou_aware_factor
))
*
(
sigmoid
(
ioup
)
**
iou_aware_factor
))
else
:
pred_conf
=
sigmoid
(
x
[:,
:,
:,
:,
4
:
5
])
pred_conf
[(
pred_conf
<
conf_thresh
)]
=
0.0
pred_score
=
(
sigmoid
(
x
[:,
:,
:,
:,
5
:])
*
pred_conf
)
pred_box
=
(
pred_box
*
(
pred_conf
>
0.0
).
astype
(
'float32'
))
pred_box
=
pred_box
.
reshape
((
n
,
(
-
1
),
4
))
(
pred_box
[:,
:,
:
2
],
pred_box
[:,
:,
2
:
4
])
=
((
pred_box
[:,
:,
:
2
]
-
(
pred_box
[:,
:,
2
:
4
]
/
2.0
)),
(
pred_box
[:,
:,
:
2
]
+
(
pred_box
[:,
:,
2
:
4
]
/
2.0
)))
pred_box
[:,
:,
0
]
=
(
pred_box
[:,
:,
0
]
*
img_size
[:,
1
][:,
np
.
newaxis
])
pred_box
[:,
:,
1
]
=
(
pred_box
[:,
:,
1
]
*
img_size
[:,
0
][:,
np
.
newaxis
])
pred_box
[:,
:,
2
]
=
(
pred_box
[:,
:,
2
]
*
img_size
[:,
1
][:,
np
.
newaxis
])
pred_box
[:,
:,
3
]
=
(
pred_box
[:,
:,
3
]
*
img_size
[:,
0
][:,
np
.
newaxis
])
if
clip_bbox
:
for
i
in
range
(
len
(
pred_box
)):
pred_box
[
i
,
:,
0
]
=
np
.
clip
(
pred_box
[
i
,
:,
0
],
0
,
np
.
inf
)
pred_box
[
i
,
:,
1
]
=
np
.
clip
(
pred_box
[
i
,
:,
1
],
0
,
np
.
inf
)
pred_box
[
i
,
:,
2
]
=
np
.
clip
(
pred_box
[
i
,
:,
2
],
(
-
np
.
inf
),
(
img_size
[(
i
,
1
)]
-
1
))
pred_box
[
i
,
:,
3
]
=
np
.
clip
(
pred_box
[
i
,
:,
3
],
(
-
np
.
inf
),
(
img_size
[(
i
,
0
)]
-
1
))
return
(
pred_box
,
pred_score
.
reshape
((
n
,
(
-
1
),
class_num
)))
class
TestYoloBoxOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
'yolo_box'
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
python_api
=
paddle
.
vision
.
ops
.
yolo_box
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
'float32'
)
img_size
=
np
.
random
.
randint
(
10
,
20
,
self
.
imgsize_shape
).
astype
(
'int32'
)
self
.
attrs
=
{
'anchors'
:
self
.
anchors
,
'class_num'
:
self
.
class_num
,
'conf_thresh'
:
self
.
conf_thresh
,
'downsample_ratio'
:
self
.
downsample
,
'clip_bbox'
:
self
.
clip_bbox
,
'scale_x_y'
:
self
.
scale_x_y
,
'iou_aware'
:
self
.
iou_aware
,
'iou_aware_factor'
:
self
.
iou_aware_factor
}
self
.
inputs
=
{
'X'
:
x
,
'ImgSize'
:
img_size
}
(
boxes
,
scores
)
=
YoloBox
(
x
,
img_size
,
self
.
attrs
)
self
.
outputs
=
{
'Boxes'
:
boxes
,
'Scores'
:
scores
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
,
atol
=
1e-5
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
True
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxOpNoClipBbox
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
False
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxOpScaleXY
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
True
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.2
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxOpIoUAware
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
True
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
6
+
self
.
class_num
)),
13
,
13
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
True
self
.
iou_aware_factor
=
0.5
class
TestYoloBoxDygraph
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
paddle
.
disable_static
()
img_size
=
np
.
ones
((
2
,
2
)).
astype
(
'int32'
)
img_size
=
paddle
.
to_tensor
(
img_size
)
x1
=
np
.
random
.
random
([
2
,
14
,
8
,
8
]).
astype
(
'float32'
)
x1
=
paddle
.
to_tensor
(
x1
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x1
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
)
assert
((
boxes
is
not
None
)
and
(
scores
is
not
None
))
x2
=
np
.
random
.
random
([
2
,
16
,
8
,
8
]).
astype
(
'float32'
)
x2
=
paddle
.
to_tensor
(
x2
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x2
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
,
iou_aware
=
True
,
iou_aware_factor
=
0.5
)
paddle
.
enable_static
()
class
TestYoloBoxStatic
(
unittest
.
TestCase
):
def
test_static
(
self
):
x1
=
paddle
.
static
.
data
(
'x1'
,
[
2
,
14
,
8
,
8
],
'float32'
)
img_size
=
paddle
.
static
.
data
(
'img_size'
,
[
2
,
2
],
'int32'
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x1
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
)
assert
((
boxes
is
not
None
)
and
(
scores
is
not
None
))
x2
=
paddle
.
static
.
data
(
'x2'
,
[
2
,
16
,
8
,
8
],
'float32'
)
(
boxes
,
scores
)
=
paddle
.
vision
.
ops
.
yolo_box
(
x2
,
img_size
=
img_size
,
anchors
=
[
10
,
13
,
16
,
30
],
class_num
=
2
,
conf_thresh
=
0.01
,
downsample_ratio
=
8
,
clip_bbox
=
True
,
scale_x_y
=
1.0
,
iou_aware
=
True
,
iou_aware_factor
=
0.5
)
assert
((
boxes
is
not
None
)
and
(
scores
is
not
None
))
class
TestYoloBoxOpHW
(
TestYoloBoxOp
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
((
len
(
self
.
anchors
)
//
2
))
self
.
batch_size
=
32
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
clip_bbox
=
False
self
.
x_shape
=
(
self
.
batch_size
,
(
an_num
*
(
5
+
self
.
class_num
)),
13
,
9
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
self
.
scale_x_y
=
1.0
self
.
iou_aware
=
False
self
.
iou_aware_factor
=
0.5
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录