Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
82cd8d21
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
82cd8d21
编写于
6月 28, 2022
作者:
W
WangZhen
提交者:
GitHub
6月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Speed up matrix_rank_tol_kernel.cc compile time (#43856)
上级
6d436f6e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
49 addition
and
47 deletion
+49
-47
paddle/phi/kernels/cpu/matrix_rank_tol_kernel.cc
paddle/phi/kernels/cpu/matrix_rank_tol_kernel.cc
+49
-47
未找到文件。
paddle/phi/kernels/cpu/matrix_rank_tol_kernel.cc
浏览文件 @
82cd8d21
...
...
@@ -14,67 +14,66 @@
#include "paddle/phi/kernels/matrix_rank_tol_kernel.h"
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/abs_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/compare_functors.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
#include "paddle/phi/kernels/funcs/values_vectors_functor.h"
#include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h"
#include "paddle/phi/kernels/reduce_max_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace
phi
{
template
<
typename
T
>
void
BatchEigenvalues
(
const
T
*
x_data
,
T
*
eigenvalues_data
,
int
batches
,
int
rows
,
int
cols
,
int
k
)
{
// Eigen::Matrix API need non-const pointer.
T
*
input
=
const_cast
<
T
*>
(
x_data
);
int
stride
=
rows
*
cols
;
for
(
int
i
=
0
;
i
<
batches
;
i
++
)
{
auto
m
=
Eigen
::
Map
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
(
input
+
i
*
stride
,
rows
,
rows
);
Eigen
::
SelfAdjointEigenSolver
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
eigen_solver
(
m
);
auto
eigenvalues
=
eigen_solver
.
eigenvalues
().
cwiseAbs
();
for
(
int
j
=
0
;
j
<
k
;
j
++
)
{
*
(
eigenvalues_data
+
i
*
k
+
j
)
=
eigenvalues
[
j
];
}
void
LapackSVD
(
const
T
*
x_data
,
T
*
eigenvalues_data
,
int
rows
,
int
cols
)
{
char
jobz
=
'N'
;
int
mx
=
std
::
max
(
rows
,
cols
);
int
mn
=
std
::
min
(
rows
,
cols
);
T
*
a
=
const_cast
<
T
*>
(
x_data
);
int
lda
=
rows
;
int
lwork
=
3
*
mn
+
std
::
max
(
mx
,
7
*
mn
);
std
::
vector
<
T
>
work
(
lwork
);
std
::
vector
<
int
>
iwork
(
8
*
mn
);
int
info
;
phi
::
funcs
::
lapackSvd
<
T
>
(
jobz
,
rows
,
cols
,
a
,
lda
,
eigenvalues_data
,
nullptr
,
1
,
nullptr
,
1
,
work
.
data
(),
lwork
,
iwork
.
data
(),
&
info
);
if
(
info
<
0
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"This %s-th argument has an illegal value"
,
info
));
}
if
(
info
>
0
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"DBDSDC/SBDSDC did not converge, updating process failed. May be you "
"passes a invalid matrix."
));
}
}
template
<
typename
T
>
void
BatchSVD
(
const
T
*
x_data
,
T
*
eigenvalues_data
,
int
batches
,
int
rows
,
int
cols
,
int
k
)
{
// Eigen::Matrix API need non-const pointer.
T
*
input
=
const_cast
<
T
*>
(
x_data
);
void
BatchSVD
(
const
T
*
x_data
,
T
*
eigenvalues_data
,
int
batches
,
int
rows
,
int
cols
)
{
int
stride
=
rows
*
cols
;
Eigen
::
BDCSVD
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
svd
;
for
(
int
i
=
0
;
i
<
batches
;
i
++
)
{
auto
m
=
Eigen
::
Map
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
(
input
+
i
*
stride
,
rows
,
cols
);
svd
.
compute
(
m
);
auto
res_s
=
svd
.
singularValues
();
for
(
int
j
=
0
;
j
<
k
;
j
++
)
{
eigenvalues_data
[
i
*
k
+
j
]
=
res_s
[
j
];
}
int
k
=
std
::
min
(
rows
,
cols
);
for
(
int
i
=
0
;
i
<
batches
;
++
i
)
{
LapackSVD
<
T
>
(
x_data
+
i
*
stride
,
eigenvalues_data
+
i
*
k
,
rows
,
cols
);
}
}
...
...
@@ -85,7 +84,6 @@ void MatrixRankTolKernel(const Context& dev_ctx,
bool
use_default_tol
,
bool
hermitian
,
DenseTensor
*
out
)
{
auto
*
x_data
=
x
.
data
<
T
>
();
dev_ctx
.
template
Alloc
<
int64_t
>(
out
);
auto
dim_x
=
x
.
dims
();
auto
dim_out
=
out
->
dims
();
...
...
@@ -106,9 +104,13 @@ void MatrixRankTolKernel(const Context& dev_ctx,
auto
*
eigenvalue_data
=
dev_ctx
.
template
Alloc
<
T
>(
&
eigenvalue_tensor
);
if
(
hermitian
)
{
BatchEigenvalues
<
T
>
(
x_data
,
eigenvalue_data
,
batches
,
rows
,
cols
,
k
);
phi
::
funcs
::
MatrixEighFunctor
<
Context
,
T
>
functor
;
functor
(
dev_ctx
,
x
,
&
eigenvalue_tensor
,
nullptr
,
true
,
false
);
phi
::
AbsKernel
<
T
,
Context
>
(
dev_ctx
,
eigenvalue_tensor
,
&
eigenvalue_tensor
);
}
else
{
BatchSVD
<
T
>
(
x_data
,
eigenvalue_data
,
batches
,
rows
,
cols
,
k
);
DenseTensor
trans_x
=
phi
::
TransposeLast2Dim
<
T
>
(
dev_ctx
,
x
);
auto
*
x_data
=
trans_x
.
data
<
T
>
();
BatchSVD
<
T
>
(
x_data
,
eigenvalue_data
,
batches
,
rows
,
cols
);
}
DenseTensor
max_eigenvalue_tensor
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录