Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
82bb9170
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82bb9170
编写于
8月 20, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into fix/op/elewise_add
上级
0507f7bc
99f74be5
变更
23
隐藏空白更改
内联
并排
Showing
23 changed file
with
376 addition
and
172 deletion
+376
-172
CMakeLists.txt
CMakeLists.txt
+1
-1
cmake/configure.cmake
cmake/configure.cmake
+5
-5
cmake/cudnn.cmake
cmake/cudnn.cmake
+19
-2
cmake/flags.cmake
cmake/flags.cmake
+5
-0
cmake/simd.cmake
cmake/simd.cmake
+13
-1
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+2
-1
paddle/fluid/framework/program_desc.cc
paddle/fluid/framework/program_desc.cc
+21
-13
paddle/fluid/framework/program_desc.h
paddle/fluid/framework/program_desc.h
+2
-0
paddle/fluid/framework/program_desc_test.cc
paddle/fluid/framework/program_desc_test.cc
+25
-1
paddle/fluid/inference/api/high_level_api_cn.md
paddle/fluid/inference/api/high_level_api_cn.md
+3
-3
paddle/fluid/inference/tensorrt/CMakeLists.txt
paddle/fluid/inference/tensorrt/CMakeLists.txt
+1
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+15
-4
paddle/fluid/operators/conditional_block_op.cc
paddle/fluid/operators/conditional_block_op.cc
+42
-30
paddle/fluid/operators/crf_decoding_op.h
paddle/fluid/operators/crf_decoding_op.h
+194
-0
paddle/fluid/operators/nccl/CMakeLists.txt
paddle/fluid/operators/nccl/CMakeLists.txt
+1
-1
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+2
-10
paddle/fluid/operators/unsqueeze_op.cc
paddle/fluid/operators/unsqueeze_op.cc
+2
-11
paddle/fluid/platform/dynload/CMakeLists.txt
paddle/fluid/platform/dynload/CMakeLists.txt
+1
-1
paddle/fluid/platform/enforce.h
paddle/fluid/platform/enforce.h
+3
-3
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+2
-2
python/paddle/fluid/tests/test_if_else_op.py
python/paddle/fluid/tests/test_if_else_op.py
+15
-3
python/paddle/fluid/tests/unittests/test_squeeze_op.py
python/paddle/fluid/tests/unittests/test_squeeze_op.py
+1
-45
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
+1
-34
未找到文件。
CMakeLists.txt
浏览文件 @
82bb9170
...
...
@@ -212,6 +212,7 @@ elseif()
set
(
WITH_ANAKIN OFF CACHE STRING
"Anakin is used in GPU only now."
FORCE
)
endif
()
include
(
flags
)
# set paddle compile flags
include
(
cudnn
)
# set cudnn libraries, must before configure
include
(
cupti
)
include
(
configure
)
# add paddle env configuration
...
...
@@ -220,7 +221,6 @@ include(package) # set paddle packages
include
(
ccache
)
# set ccache for compilation
include
(
util
)
# set unittest and link libs
include
(
rdma
)
# set rdma libraries
include
(
flags
)
# set paddle compile flags
include
(
version
)
# set PADDLE_VERSION
include
(
coveralls
)
# set code coverage
include
(
inference_lib
)
# add paddle fluid inference libraries
...
...
cmake/configure.cmake
浏览文件 @
82bb9170
...
...
@@ -50,16 +50,16 @@ if(NOT WITH_PROFILER)
endif
(
NOT WITH_PROFILER
)
if
(
NOT CMAKE_CROSSCOMPILING
)
if
(
WITH_AVX AND AVX_FOUND
)
if
(
WITH_AVX AND AVX512F_FOUND
)
set
(
SIMD_FLAG
${
AVX512F_FLAG
}
)
elseif
(
WITH_AVX AND AVX2_FOUND
)
set
(
SIMD_FLAG
${
AVX2_FLAG
}
)
elseif
(
WITH_AVX AND AVX_FOUND
)
set
(
SIMD_FLAG
${
AVX_FLAG
}
)
elseif
(
SSE3_FOUND
)
set
(
SIMD_FLAG
${
SSE3_FLAG
}
)
endif
()
endif
()
if
(
UNIX AND NOT APPLE
)
# except apple from nix*Os family
set
(
LINUX TRUE
)
endif
(
UNIX AND NOT APPLE
)
if
(
NOT WITH_GOLANG
)
add_definitions
(
-DPADDLE_WITHOUT_GOLANG
)
...
...
cmake/cudnn.cmake
浏览文件 @
82bb9170
...
...
@@ -25,8 +25,25 @@ list(APPEND CUDNN_CHECK_LIBRARY_DIRS
$ENV{CUDNN_ROOT}
$ENV{CUDNN_ROOT}/lib64
$ENV{CUDNN_ROOT}/lib
/usr/lib
)
find_library
(
CUDNN_LIBRARY NAMES libcudnn.so libcudnn.dylib
# libcudnn_static.a
/usr/lib
${
CUDA_TOOLKIT_ROOT_DIR
}
${
CUDA_TOOLKIT_ROOT_DIR
}
/lib/x64
)
set
(
CUDNN_LIB_NAME
""
)
if
(
LINUX
)
set
(
CUDNN_LIB_NAME
"libcudnn.so"
)
endif
(
LINUX
)
if
(
WIN32
)
# only support cudnn7
set
(
CUDNN_LIB_NAME
"cudnn.lib"
"cudnn64_7.dll"
)
endif
(
WIN32
)
if
(
Apple
)
set
(
CUDNN_LIB_NAME
"libcudnn.dylib"
"libcudnn.so"
)
endif
(
Apple
)
find_library
(
CUDNN_LIBRARY NAMES
${
CUDNN_LIB_NAME
}
# libcudnn_static.a
PATHS
${
CUDNN_CHECK_LIBRARY_DIRS
}
${
CUDNN_INCLUDE_DIR
}
${
__libpath_hist
}
NO_DEFAULT_PATH
DOC
"Path to cuDNN library."
)
...
...
cmake/flags.cmake
浏览文件 @
82bb9170
...
...
@@ -142,6 +142,11 @@ else()
${
GPU_COMMON_FLAGS
}
)
endif
()
if
(
UNIX AND NOT APPLE
)
# except apple from nix*Os family
set
(
LINUX TRUE
)
endif
(
UNIX AND NOT APPLE
)
foreach
(
flag
${
COMMON_FLAGS
}
)
safe_set_cflag
(
CMAKE_C_FLAGS
${
flag
}
)
...
...
cmake/simd.cmake
浏览文件 @
82bb9170
...
...
@@ -10,6 +10,7 @@ if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID
set
(
SSE3_FLAG
"-msse3"
)
set
(
AVX_FLAG
"-mavx"
)
set
(
AVX2_FLAG
"-mavx2"
)
set
(
AVX512F_FLAG
"-mavx512f"
)
elseif
(
MSVC
)
set
(
MMX_FLAG
"/arch:MMX"
)
set
(
SSE2_FLAG
"/arch:SSE2"
)
...
...
@@ -81,5 +82,16 @@ int main()
return 0;
}"
AVX2_FOUND
)
# Check AVX512F
set
(
CMAKE_REQUIRED_FLAGS
${
AVX512F_FLAG
}
)
set
(
AVX512F_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m512i a = _mm512_undefined_epi32();
return 0;
}"
AVX512F_FOUND
)
set
(
CMAKE_REQUIRED_FLAGS
${
CMAKE_REQUIRED_FLAGS_RETAINED
}
)
mark_as_advanced
(
MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND
)
mark_as_advanced
(
MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND
AVX512F_FOUND
)
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
82bb9170
...
...
@@ -99,12 +99,13 @@ else()
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method
)
endif
()
if
(
NOT WIN32
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fast_threaded_ssa_graph_executor
)
endif
()
# NOT WIN32
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/program_desc.cc
浏览文件 @
82bb9170
...
...
@@ -55,11 +55,20 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
auto
all_ops
=
blocks_
[
block_id
]
->
AllOps
();
for
(
size_t
op_id
=
0
;
op_id
<
all_ops
.
size
();
++
op_id
)
{
auto
&
op
=
all_ops
[
op_id
];
for
(
const
std
::
string
&
attr_name
:
op
->
AttrNames
())
{
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCK
)
{
int
sub_block_id
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttrId
(
attr_name
);
op
->
SetBlockAttr
(
attr_name
,
MutableBlock
(
sub_block_id
));
}
else
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCKS
)
{
std
::
vector
<
int
>
sub_block_ids
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlocksAttrIds
(
attr_name
);
std
::
vector
<
BlockDesc
*>
block_descs
;
for
(
int
block_id
:
sub_block_ids
)
{
block_descs
.
push_back
(
MutableBlock
(
block_id
));
}
op
->
SetBlocksAttr
(
attr_name
,
block_descs
);
}
}
}
...
...
@@ -68,24 +77,16 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
ProgramDesc
::
ProgramDesc
(
const
proto
::
ProgramDesc
&
desc
)
{
desc_
=
desc
;
for
(
auto
&
block_desc
:
*
desc_
.
mutable_blocks
())
{
blocks_
.
emplace_back
(
new
BlockDesc
(
this
,
&
block_desc
));
}
for
(
auto
&
block
:
blocks_
)
{
for
(
auto
*
op
:
block
->
AllOps
())
{
for
(
const
auto
&
attr
:
op
->
Proto
()
->
attrs
())
{
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
size_t
blk_idx
=
attr
.
block_idx
();
op
->
SetBlockAttr
(
attr
.
name
(),
this
->
MutableBlock
(
blk_idx
));
}
}
}
}
InitFromProto
();
}
ProgramDesc
::
ProgramDesc
(
const
std
::
string
&
binary_str
)
{
PADDLE_ENFORCE
(
desc_
.
ParseFromString
(
binary_str
),
"Fail to parse program_desc from binary string."
);
InitFromProto
();
}
void
ProgramDesc
::
InitFromProto
()
{
for
(
auto
&
block_desc
:
*
desc_
.
mutable_blocks
())
{
blocks_
.
emplace_back
(
new
BlockDesc
(
this
,
&
block_desc
));
}
...
...
@@ -95,6 +96,13 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) {
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
size_t
blk_idx
=
attr
.
block_idx
();
op
->
SetBlockAttr
(
attr
.
name
(),
this
->
MutableBlock
(
blk_idx
));
}
else
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCKS
)
{
auto
blks_idx
=
attr
.
blocks_idx
();
std
::
vector
<
BlockDesc
*>
block_descs
;
for
(
int
blk_idx
:
blks_idx
)
{
block_descs
.
push_back
(
this
->
MutableBlock
(
blk_idx
));
}
op
->
SetBlocksAttr
(
attr
.
name
(),
block_descs
);
}
}
}
...
...
paddle/fluid/framework/program_desc.h
浏览文件 @
82bb9170
...
...
@@ -76,6 +76,8 @@ class ProgramDesc {
void
SetFetchHolderName
(
const
std
::
string
&
fetch_holder_name
);
private:
void
InitFromProto
();
proto
::
ProgramDesc
desc_
;
std
::
vector
<
std
::
unique_ptr
<
BlockDesc
>>
blocks_
;
...
...
paddle/fluid/framework/program_desc_test.cc
浏览文件 @
82bb9170
...
...
@@ -42,6 +42,19 @@ TEST(ProgramDesc, copy_ctor) {
out
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
op
->
SetOutput
(
"Y"
,
{
out
->
Name
()});
BlockDesc
*
new_block
=
program
.
AppendBlock
(
*
global_block
);
op
=
new_block
->
AppendOp
();
op
->
SetType
(
"mul"
);
op
=
global_block
->
AppendOp
();
op
->
SetType
(
"op_with_subblock"
);
op
->
SetAttr
(
"sub_block"
,
new_block
);
std
::
vector
<
BlockDesc
*>
sub_blocks
;
sub_blocks
.
push_back
(
program
.
AppendBlock
(
*
global_block
));
sub_blocks
.
push_back
(
program
.
AppendBlock
(
*
global_block
));
op
->
SetAttr
(
"sub_blocks"
,
sub_blocks
);
ProgramDesc
program_copy
(
program
);
auto
*
global_block_copy
=
program_copy
.
MutableBlock
(
0
);
...
...
@@ -64,6 +77,8 @@ TEST(ProgramDesc, copy_ctor) {
assert_same_var
(
"Y"
,
y
);
assert_same_var
(
"Out"
,
out
);
bool
found_sub_block
=
false
;
bool
found_sub_blocks
=
false
;
for
(
size_t
i
=
0
;
i
<
global_block
->
OpSize
();
++
i
)
{
auto
op_origin
=
global_block
->
Op
(
i
);
auto
op_copy
=
global_block_copy
->
Op
(
i
);
...
...
@@ -74,8 +89,17 @@ TEST(ProgramDesc, copy_ctor) {
ASSERT_EQ
(
op_copy
->
Proto
()
->
SerializeAsString
(),
op_origin
->
Proto
()
->
SerializeAsString
());
}
if
(
op
->
Type
()
==
"op_with_subblock"
)
{
ASSERT_EQ
(
1
,
op
->
GetBlockAttrId
(
"sub_block"
));
found_sub_block
=
true
;
ASSERT_EQ
(
2
,
op
->
GetBlocksAttrIds
(
"sub_blocks"
).
size
());
found_sub_blocks
=
true
;
}
}
ASSERT_TRUE
(
found_sub_block
);
ASSERT_TRUE
(
found_sub_blocks
);
// Not check block's protostr are same it because the order of vars could be
// different and it is correct.
}
...
...
paddle/fluid/inference/api/high_level_api_cn.md
浏览文件 @
82bb9170
...
...
@@ -65,13 +65,13 @@ config.model_dir = "xxx";
config
.
use_gpu
=
false
;
// 创建一个原生的 PaddlePredictor
auto
predictor
=
paddle
::
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
paddle
::
CreatePaddlePredictor
<
paddle
::
NativeConfig
,
paddle
::
PaddleEngineKind
::
kNative
>
(
config
);
// 创建输入 tensor
int64_t
data
[
4
]
=
{
1
,
2
,
3
,
4
};
paddle
::
PaddleTensor
tensor
{.
name
=
""
,
.
shape
=
std
::
vector
<
int
>
({
4
,
1
}),
.
data
=
PaddleBuf
(
data
,
sizeof
(
data
)),
.
dtype
=
PaddleDType
::
INT64
};
.
data
=
paddle
::
PaddleBuf
(
data
,
sizeof
(
data
)),
.
dtype
=
paddle
::
PaddleDType
::
INT64
};
// 创建输出 tensor,输出 tensor 的内存可以复用
std
::
vector
<
paddle
::
PaddleTensor
>
outputs
;
// 执行预测
...
...
paddle/fluid/inference/tensorrt/CMakeLists.txt
浏览文件 @
82bb9170
nv_library
(
tensorrt_engine SRCS engine.cc DEPS framework_proto
)
nv_library
(
tensorrt_engine SRCS engine.cc DEPS framework_proto
device_context
)
nv_test
(
test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader
)
nv_test
(
test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine
)
add_subdirectory
(
convert
)
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
82bb9170
...
...
@@ -84,6 +84,15 @@ function(op_library TARGET)
message
(
FATAL_ERROR
"The op library
${
TARGET
}
should contains at least one .cc file"
)
endif
()
#remove windows unsupported op
if
(
WIN32
)
foreach
(
windows_unsupport_op
"nccl_op"
"gen_nccl_id_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
windows_unsupport_op
}
"
)
return
()
endif
()
endforeach
()
endif
(
WIN32
)
list
(
LENGTH op_library_DEPS op_library_DEPS_len
)
if
(
${
op_library_DEPS_len
}
GREATER 0
)
set
(
DEPS_OPS
${
TARGET
}
${
DEPS_OPS
}
PARENT_SCOPE
)
...
...
@@ -181,19 +190,19 @@ function(op_library TARGET)
endfunction
()
add_subdirectory
(
math
)
if
(
NOT WIN32
)
add_subdirectory
(
nccl
)
if
(
WITH_GPU
)
op_library
(
nccl_op DEPS nccl_common
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(ncclAllReduce);
\n
"
)
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
nccl_op
)
endif
()
endif
()
# NOT WIN32
set
(
DISTRIBUTE_DEPS
""
)
if
(
WITH_DISTRIBUTE
)
add_subdirectory
(
distributed
)
set
(
DISTRIBUTE_DEPS
""
)
if
(
WITH_GRPC
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf node
)
...
...
@@ -222,7 +231,7 @@ if(WITH_DISTRIBUTE)
#set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
#cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op
# listen_and_serv_op sum_op executor SERIAL)
if
(
WITH_GPU
)
if
(
WITH_GPU
AND NOT WIN32
)
set_source_files_properties
(
test_send_nccl_id.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
cc_test
(
test_send_nccl_id SRCS test_send_nccl_id.cc DEPS listen_and_serv_op
${
DISTRIBUTE_DEPS
}
executor SERIAL
)
if
(
WITH_GRPC
)
...
...
@@ -233,7 +242,7 @@ if(WITH_DISTRIBUTE)
set_source_files_properties
(
gen_nccl_id_op.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
gen_nccl_id_op
)
endif
()
endif
()
# WITH_GPU AND NOT WIN32
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
checkpoint_notify_op prefetch_op recv_op listen_and_serv_op send_op send_barrier_op fetch_barrier_op gen_nccl_id_op
)
endif
()
...
...
@@ -331,5 +340,7 @@ cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_sea
cc_test
(
strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory
)
cc_test
(
save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op
)
cc_test
(
save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op
)
if
(
NOT WIN32
)
nv_test
(
nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context
)
endif
()
nv_test
(
dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor
)
paddle/fluid/operators/conditional_block_op.cc
浏览文件 @
82bb9170
...
...
@@ -29,9 +29,9 @@ class ConditionalOp : public framework::OperatorBase {
protected:
std
::
vector
<
const
framework
::
LoDTensor
*>
InputTensors
(
const
framework
::
Scope
&
scope
)
const
{
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_name
)
const
{
std
::
vector
<
const
framework
::
LoDTensor
*>
retv
;
auto
xs
=
Inputs
(
"X"
);
auto
xs
=
Inputs
(
in_name
);
retv
.
resize
(
xs
.
size
(),
nullptr
);
std
::
transform
(
xs
.
begin
(),
xs
.
end
(),
retv
.
begin
(),
...
...
@@ -81,12 +81,18 @@ class ConditionalBlockOp : public ConditionalOp {
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
InputTensors
(
scope
);
bool
need_run
;
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
// When is_scalar_condition is True, the conditional variable is a scalar,
// whether need to execute the operators in sub-block depends on the
// conditional variable (Cond).
auto
xs
=
InputTensors
(
scope
,
"Cond"
);
need_run
=
ScalarCondition
(
xs
);
}
else
{
// When is_scalar_condition is False, the conditional variable maybe a
// vector or tensor, whether need to execute the operators in sub-block
// depends on the input variables (Input).
auto
xs
=
InputTensors
(
scope
,
"Input"
);
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
...
...
@@ -110,11 +116,11 @@ class ConditionalBlockOp : public ConditionalOp {
class
ConditionalBlockOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"
X
"
,
"The conditional variable of this operator. If
X
is empty, the "
AddInput
(
"
Cond
"
,
"The conditional variable of this operator. If
Cond
is empty, the "
"whole sub-block will not be executed."
)
.
AsDuplicable
();
AddInput
(
"
Params
"
,
"The input variables of the sub-block."
).
AsDuplicable
();
AddInput
(
"
Input
"
,
"The input variables of the sub-block."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"The output variables of the sub-block."
).
AsDuplicable
();
AddOutput
(
"Scope"
,
"(std::vector<Scope*>) The step scope of conditional block. To "
...
...
@@ -123,13 +129,18 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
framework
::
BlockDesc
*>
(
"sub_block"
,
"The step block of conditional block operator"
);
AddAttr
<
bool
>
(
"is_scalar_condition"
,
"
the input X
is used as scalar "
"condition"
)
"
The conditional variable (Cond)
is used as scalar "
"condition
.
"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(Conditional block operator
Run the sub-block if X is not empty. Params is the other inputs and Out is the
outputs of the sub-block.
If `is_scalar_condition` is True, the conditional variable (Cond) is a scalar,
run the operators in sub-block if Cond is True.
If `is_scalar_condition` is False, the conditional variable (Cond) is a vector or
tensor, run the operators in sub-block if all of input variables are not empty.
)DOC"
);
}
};
...
...
@@ -145,12 +156,12 @@ class ConditionalBlockGradOp : public ConditionalOp {
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
this
->
InputTensors
(
scope
);
bool
need_run
;
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
auto
xs
=
this
->
InputTensors
(
scope
,
"Cond"
);
need_run
=
ScalarCondition
(
xs
);
}
else
{
auto
xs
=
this
->
InputTensors
(
scope
,
"Input"
);
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
...
...
@@ -166,11 +177,11 @@ class ConditionalBlockGradOp : public ConditionalOp {
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
"sub_block"
);
exec
.
Run
(
*
block
->
Program
(),
&
cur_scope
,
block
->
ID
(),
false
);
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
Params
"
),
Outputs
(
framework
::
GradVarName
(
"
Params
"
)));
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
Input
"
),
Outputs
(
framework
::
GradVarName
(
"
Input
"
)));
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
X
"
),
Outputs
(
framework
::
GradVarName
(
"
X
"
)));
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
Cond
"
),
Outputs
(
framework
::
GradVarName
(
"
Cond
"
)));
}
}
...
...
@@ -199,15 +210,15 @@ class ConditionalBlockGradOp : public ConditionalOp {
class
ConditionalBlockGradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInputs
(
"
X
"
));
if
(
context
->
HasInputs
(
"
Params
"
))
{
PADDLE_ENFORCE
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
Params
"
)));
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
Params
"
),
context
->
GetInputsDim
(
"
Params
"
));
PADDLE_ENFORCE
(
context
->
HasInputs
(
"
Cond
"
));
if
(
context
->
HasInputs
(
"
Input
"
))
{
PADDLE_ENFORCE
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
Input
"
)));
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
Input
"
),
context
->
GetInputsDim
(
"
Input
"
));
}
if
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
X
"
)))
{
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
X
"
),
context
->
GetInputsDim
(
"
X
"
));
if
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
Cond
"
)))
{
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
Cond
"
),
context
->
GetInputsDim
(
"
Cond
"
));
}
}
};
...
...
@@ -220,14 +231,15 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"conditional_block_grad"
);
grad_op
->
SetInput
(
"
X"
,
Input
(
"X
"
));
grad_op
->
SetInput
(
"
Params"
,
Input
(
"Params
"
));
grad_op
->
SetInput
(
"
Cond"
,
Input
(
"Cond
"
));
grad_op
->
SetInput
(
"
Input"
,
Input
(
"Input
"
));
grad_op
->
SetInput
(
"Out"
,
Output
(
"Out"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetInput
(
"Scope"
,
Output
(
"Scope"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
,
false
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Params"
),
InputGrad
(
"Params"
,
false
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Cond"
),
InputGrad
(
"Cond"
,
false
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Input"
),
InputGrad
(
"Input"
,
false
));
grad_op
->
SetBlockAttr
(
"sub_block"
,
this
->
grad_block_
[
0
]);
grad_op
->
SetAttr
(
"is_scalar_condition"
,
GetAttr
(
"is_scalar_condition"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
...
...
paddle/fluid/operators/crf_decoding_op.h
浏览文件 @
82bb9170
...
...
@@ -85,6 +85,199 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
int
*
track_value
=
track
.
mutable_data
<
int
>
(
emission_dims
,
platform
::
CPUPlace
());
#ifdef __AVX__
// It use the AVX or AVX512 instruction to deal the data as the vector of 8 or
// 16 elements per iteration. Then it can implement the parallel processing.
// Only optimize for float type.
#ifdef __AVX512F__
size_t
step_size
=
16
;
#else
size_t
step_size
=
8
;
#endif
if
(
std
::
is_same
<
T
,
float
>::
value
&&
(
tag_num
>=
step_size
))
{
size_t
steps
=
tag_num
/
step_size
;
size_t
remain
=
tag_num
%
step_size
;
int
last_offset
=
static_cast
<
int
>
(
remain
)
-
static_cast
<
int
>
(
step_size
);
// Setup the alpha initial value.
size_t
i_offset
=
0
;
for
(
size_t
i
=
0
;
i
<=
steps
;
++
i
)
{
#ifdef __AVX512F__
// Declare the variable for the content of weights, input and alpha
// values.
__m512
w_content
,
x_content
,
alpha_content
;
// Load the relevant data into the variables from un-aligned address.
w_content
=
_mm512_loadu_ps
((
const
float
*
)(
w
+
i_offset
));
x_content
=
_mm512_loadu_ps
((
const
float
*
)(
x
+
i_offset
));
alpha_content
=
_mm512_add_ps
(
w_content
,
x_content
);
// Save the alpha value.
_mm512_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
i_offset
),
alpha_content
);
#else
// Declare the variable for the content of weights, input and alpha
// values.
__m256
w_content
,
x_content
,
alpha_content
;
// Load the relevant data into the variables from un-aligned address.
w_content
=
_mm256_loadu_ps
((
const
float
*
)(
w
+
i_offset
));
x_content
=
_mm256_loadu_ps
((
const
float
*
)(
x
+
i_offset
));
alpha_content
=
_mm256_add_ps
(
w_content
,
x_content
);
// Save the alpha value.
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
i_offset
),
alpha_content
);
#endif
i_offset
+=
step_size
;
if
(
i
==
steps
-
1
)
{
if
(
remain
>
0
)
{
i_offset
+=
last_offset
;
}
else
{
break
;
}
}
}
// Use the column-major strategy to get the location of maximum score.
size_t
seq_offset
=
0
;
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
size_t
j_offset
=
0
;
for
(
size_t
j
=
0
;
j
<=
steps
;
++
j
)
{
#ifdef __AVX512F__
// Initialize the variables of maximum score and location.
__m512
max_score
=
_mm512_set1_ps
(
-
std
::
numeric_limits
<
T
>::
max
());
__m512i
max_j
=
_mm512_setzero_si512
();
#else
// Initialize the variables of maximum score and location.
__m256
max_score
=
_mm256_set1_ps
(
-
std
::
numeric_limits
<
T
>::
max
());
__m256i
max_j
=
_mm256_set1_epi32
(
0
);
#endif
// Calculate the offset of transition_weights.
size_t
trans_offset
=
state_trans_base_idx
*
tag_num
+
j_offset
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
#ifdef __AVX512F__
// Initalize the content of alpha variable with related offset.
__m512
alpha_content
=
_mm512_set1_ps
(
*
(
const
float
*
)(
alpha_value
+
seq_offset
+
i
));
// Obtain the content of weights from un-aligned address.
__m512
w_content
=
_mm512_loadu_ps
((
const
float
*
)(
w
+
trans_offset
));
__m512
score_v
=
_mm512_add_ps
(
alpha_content
,
w_content
);
__mmask16
mask
=
_mm512_cmp_ps_mask
(
score_v
,
max_score
,
_CMP_GT_OS
);
// According to the mask value, it update the index of the max_score
// location.
max_j
=
_mm512_mask_set1_epi32
(
max_j
,
mask
,
i
);
// Update the max_score value.
max_score
=
_mm512_max_ps
(
max_score
,
score_v
);
#else
// Initalize the content of alpha variable with related offset.
__m256
alpha_content
=
_mm256_broadcast_ss
(
(
const
float
*
)(
alpha_value
+
seq_offset
+
i
));
// Obtain the content of weights from un-aligned address.
__m256
w_content
=
_mm256_loadu_ps
((
const
float
*
)(
w
+
trans_offset
));
__m256
score_v
=
_mm256_add_ps
(
alpha_content
,
w_content
);
__m256
mask
=
_mm256_cmp_ps
(
score_v
,
max_score
,
_CMP_GT_OS
);
#ifdef __AVX2__
// According to the mask value, it update the index of the max_score
// location.
max_j
=
_mm256_or_si256
(
_mm256_andnot_si256
((
__m256i
)
mask
,
max_j
),
_mm256_and_si256
((
__m256i
)
mask
,
_mm256_set1_epi32
(
i
)));
#else
__m128i
lo_max_j
=
_mm256_extractf128_si256
(
max_j
,
0
);
__m128i
hi_max_j
=
_mm256_extractf128_si256
(
max_j
,
1
);
__m128i
lo_mask
=
_mm256_extractf128_si256
((
__m256i
)
mask
,
0
);
__m128i
hi_mask
=
_mm256_extractf128_si256
((
__m256i
)
mask
,
1
);
lo_max_j
=
_mm_andnot_si128
(
lo_mask
,
lo_max_j
);
hi_max_j
=
_mm_andnot_si128
(
hi_mask
,
hi_max_j
);
lo_mask
=
_mm_and_si128
(
lo_mask
,
_mm_set1_epi32
(
i
));
hi_mask
=
_mm_and_si128
(
hi_mask
,
_mm_set1_epi32
(
i
));
lo_max_j
=
_mm_or_si128
(
lo_mask
,
lo_max_j
);
hi_max_j
=
_mm_or_si128
(
hi_mask
,
hi_max_j
);
// According to the mask value, it update the index of the max_score
// location.
max_j
=
_mm256_insertf128_si256
(
max_j
,
lo_max_j
,
0
);
max_j
=
_mm256_insertf128_si256
(
max_j
,
hi_max_j
,
1
);
#endif
// Update the max_score value.
max_score
=
_mm256_max_ps
(
max_score
,
score_v
);
#endif
trans_offset
+=
tag_num
;
}
#ifdef __AVX512F__
// Update the alpha and track values.
__m512
x_content
=
_mm512_loadu_ps
(
(
const
float
*
)(
x
+
seq_offset
+
tag_num
+
j_offset
));
max_score
=
_mm512_add_ps
(
max_score
,
x_content
);
_mm512_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
seq_offset
+
tag_num
+
j_offset
),
max_score
);
_mm512_storeu_si512
(
reinterpret_cast
<
__m512i
*>
(
track_value
+
seq_offset
+
tag_num
+
j_offset
),
max_j
);
#else
// Update the alpha and track values.
__m256
x_content
=
_mm256_loadu_ps
(
(
const
float
*
)(
x
+
seq_offset
+
tag_num
+
j_offset
));
max_score
=
_mm256_add_ps
(
max_score
,
x_content
);
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
seq_offset
+
tag_num
+
j_offset
),
max_score
);
_mm256_storeu_si256
(
reinterpret_cast
<
__m256i
*>
(
track_value
+
seq_offset
+
tag_num
+
j_offset
),
max_j
);
#endif
// Calculate the offset of next step
j_offset
+=
step_size
;
if
(
j
==
steps
-
1
)
{
if
(
remain
>
0
)
{
j_offset
+=
last_offset
;
}
else
{
break
;
}
}
}
seq_offset
+=
tag_num
;
}
}
else
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
alpha_value
[
i
]
=
w
[
i
]
+
x
[
i
];
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_j
=
0
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
T
score
=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
+
w
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
if
(
score
>
max_score
)
{
max_score
=
score
;
max_j
=
j
;
}
}
alpha_value
[
k
*
tag_num
+
i
]
=
max_score
+
x
[
k
*
tag_num
+
i
];
track_value
[
k
*
tag_num
+
i
]
=
max_j
;
}
}
}
#else
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
alpha_value
[
i
]
=
w
[
i
]
+
x
[
i
];
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
...
...
@@ -105,6 +298,7 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
}
}
#endif
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_i
=
0
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
...
...
paddle/fluid/operators/nccl/CMakeLists.txt
浏览文件 @
82bb9170
if
(
WITH_GPU
)
if
(
WITH_GPU
AND NOT WIN32
)
nv_library
(
nccl_common SRCS nccl_gpu_common.cc DEPS device_context operator
)
endif
()
paddle/fluid/operators/squeeze_op.cc
浏览文件 @
82bb9170
...
...
@@ -23,9 +23,9 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Squeeze
Op
should not be null."
);
"Input(X) of Squeeze
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Squeeze
Op
should not be null."
);
"Output(Out) of Squeeze
operator
should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// Check input tensor dims (<6) Eigen limit.
...
...
@@ -107,7 +107,6 @@ class SqueezeOp : public framework::OperatorBase {
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
...
...
@@ -125,12 +124,6 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
"(std::vector<int>). List of integers,"
" indicating the dimensions to squeeze."
)
.
SetDefault
({});
AddAttr
<
bool
>
(
"inplace"
,
"(default: false) Squeeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x)."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Squeeze Operator.
...
...
@@ -180,7 +173,6 @@ class SqueezeGradOp : public framework::OperatorBase {
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
...
...
paddle/fluid/operators/unsqueeze_op.cc
浏览文件 @
82bb9170
...
...
@@ -23,9 +23,9 @@ class UnsqueezeOpInferShape : public framework::InferShapeBase {
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Unsqueeze
Op
should not be null."
);
"Input(X) of Unsqueeze
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Unsqueeze
Op
should not be null."
);
"Output(Out) of Unsqueeze
operator
should not be null."
);
const
auto
&
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
...
...
@@ -95,7 +95,6 @@ class UnsqueezeOp : public framework::OperatorBase {
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
// Invoke Reshape op.
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
...
...
@@ -126,13 +125,6 @@ class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
" within [1, 6] dimensions (Eigen limit)."
);
}
});
AddAttr
<
bool
>
(
"inplace"
,
"(default: false) Unsqueeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x)."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Unsqueeze Operator.
...
...
@@ -168,7 +160,6 @@ class UnsqueezeGradOp : public framework::OperatorBase {
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
...
...
paddle/fluid/platform/dynload/CMakeLists.txt
浏览文件 @
82bb9170
...
...
@@ -3,7 +3,7 @@ cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags enforce)
list
(
APPEND CUDA_SRCS cublas.cc cudnn.cc curand.cc
)
# There is no macOS version of NCCL.
if
(
NOT APPLE
)
if
(
NOT APPLE
AND NOT WIN32
)
list
(
APPEND CUDA_SRCS nccl.cc
)
endif
()
...
...
paddle/fluid/platform/enforce.h
浏览文件 @
82bb9170
...
...
@@ -44,7 +44,7 @@ limitations under the License. */
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/dynload/curand.h"
#if
ndef __APPLE__
#if
!defined(__APPLE__) and !defined(_WIN32)
#include "paddle/fluid/platform/dynload/nccl.h"
#endif // __APPLE__
#endif // PADDLE_WITH_CUDA
...
...
@@ -205,7 +205,7 @@ inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
#endif
}
#if
ndef __APPLE__
#if
!defined(__APPLE__) and !defined(_WIN32)
template
<
typename
...
Args
>
inline
typename
std
::
enable_if
<
sizeof
...(
Args
)
!=
0
,
void
>::
type
throw_on_error
(
ncclResult_t
stat
,
const
Args
&
...
args
)
{
...
...
@@ -221,7 +221,7 @@ inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
#endif
}
}
#endif // __APPLE__
#endif // __APPLE__
and windows
#endif // PADDLE_WITH_CUDA
template
<
typename
T
>
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
82bb9170
...
...
@@ -1272,8 +1272,8 @@ class ConditionalBlock(object):
parent_block
.
append_op
(
type
=
'conditional_block'
,
inputs
=
{
'
X
'
:
self
.
inputs
,
'
Params
'
:
param_list
,
'
Cond
'
:
self
.
inputs
,
'
Input
'
:
param_list
,
},
outputs
=
{
'Out'
:
out_list
,
'Scope'
:
[
step_scope
]},
...
...
python/paddle/fluid/tests/test_if_else_op.py
浏览文件 @
82bb9170
...
...
@@ -30,7 +30,8 @@ import numpy as np
class
TestMNISTIfElseOp
(
unittest
.
TestCase
):
def
test_raw_api
(
self
):
# FIXME: https://github.com/PaddlePaddle/Paddle/issues/12245#issuecomment-406462379
def
not_test_raw_api
(
self
):
prog
=
Program
()
startup_prog
=
Program
()
with
program_guard
(
prog
,
startup_prog
):
...
...
@@ -91,7 +92,8 @@ class TestMNISTIfElseOp(unittest.TestCase):
return
self
.
assertFalse
(
True
)
def
test_ifelse
(
self
):
# FIXME: https://github.com/PaddlePaddle/Paddle/issues/12245#issuecomment-406462379
def
not_test_ifelse
(
self
):
prog
=
Program
()
startup_prog
=
Program
()
with
program_guard
(
prog
,
startup_prog
):
...
...
@@ -153,6 +155,13 @@ class TestIfElse(unittest.TestCase):
self
.
cond_value
=
0.5
self
.
data
=
np
.
random
.
rand
(
25
,
1
).
astype
(
np
.
float32
)
def
numpy_cal
(
self
):
s1
=
self
.
data
[
np
.
where
(
self
.
data
<
self
.
cond_value
)]
res
=
np
.
sum
(
np
.
exp
(
s1
))
s2
=
self
.
data
[
np
.
where
(
self
.
data
>=
self
.
cond_value
)]
res
+=
np
.
sum
(
np
.
tanh
(
s2
))
return
res
def
compare_ifelse_op_and_numpy
(
self
,
place
):
self
.
set_test_case
()
...
...
@@ -166,10 +175,12 @@ class TestIfElse(unittest.TestCase):
ie
=
layers
.
IfElse
(
ifcond
)
with
ie
.
true_block
():
true_target
=
ie
.
input
(
src
)
true_target
=
fluid
.
layers
.
exp
(
true_target
)
ie
.
output
(
true_target
)
with
ie
.
false_block
():
false_target
=
ie
.
input
(
src
)
false_target
=
fluid
.
layers
.
tanh
(
false_target
)
ie
.
output
(
false_target
)
if_out
=
ie
()
out
=
layers
.
reduce_sum
(
if_out
)
...
...
@@ -180,7 +191,8 @@ class TestIfElse(unittest.TestCase):
o1
,
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'data'
:
self
.
data
},
fetch_list
=
[
out
])
o2
=
np
.
sum
(
self
.
data
)
o2
=
self
.
numpy_cal
()
self
.
assertTrue
(
np
.
allclose
(
o1
,
o2
,
atol
=
1e-8
),
...
...
python/paddle/fluid/tests/unittests/test_squeeze_op.py
浏览文件 @
82bb9170
...
...
@@ -41,7 +41,7 @@ class TestSqueezeOp(OpTest):
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
False
}
self
.
attrs
=
{
"axes"
:
self
.
axes
}
# Correct: There is mins axis.
...
...
@@ -68,49 +68,5 @@ class TestSqueezeOp3(TestSqueezeOp):
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
# Correct: Inplace.
class
TestSqueezeOpInplace1
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is mins axis.
class
TestSqueezeOpInplace2
(
TestSqueezeOp
):
def
inti_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. No axes input.
class
TestSqueezeOpInplace3
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
()
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inpalce. Just part of axes be squeezed.
class
TestSqueezeOpInplace4
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
1
,
5
,
1
,
4
,
1
)
self
.
axes
=
(
1
,
-
1
)
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
浏览文件 @
82bb9170
...
...
@@ -41,7 +41,7 @@ class TestUnsqueezeOp(OpTest):
self
.
new_shape
=
(
3
,
1
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
False
}
self
.
attrs
=
{
"axes"
:
self
.
axes
}
# Correct: Single input index.
...
...
@@ -76,38 +76,5 @@ class TestUnsqueezeOp4(TestUnsqueezeOp):
self
.
new_shape
=
(
3
,
1
,
1
,
2
,
5
,
1
)
# Correct: Inplace.
class
TestUnsqueezeOpInplace1
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is mins index.
class
TestUnsqueezeOpInplace2
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is duplicated axis.
class
TestUnsqueezeOpInplace3
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
2
,
5
)
self
.
axes
=
(
0
,
3
,
3
)
self
.
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录