Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
82713eb6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82713eb6
编写于
2月 10, 2023
作者:
W
wangruting
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init layer_norm
上级
637dfe49
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
77 addition
and
71 deletion
+77
-71
python/paddle/fluid/tests/unittests/dygraph_to_static/test_cinn_prim_layer_norm.py
.../unittests/dygraph_to_static/test_cinn_prim_layer_norm.py
+4
-4
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm.py
...unittests/prim/composite_ops/test_composite_layer_norm.py
+27
-27
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm_grad.py
...ests/prim/composite_ops/test_composite_layer_norm_grad.py
+37
-31
python/paddle/incubate/autograd/composite_rules.py
python/paddle/incubate/autograd/composite_rules.py
+9
-9
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_cinn_prim_layer_norm.py
浏览文件 @
82713eb6
...
@@ -49,7 +49,7 @@ class TestPrimForward(unittest.TestCase):
...
@@ -49,7 +49,7 @@ class TestPrimForward(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
n_shape
=
x
.
shape
[
1
:]
self
.
n_shape
=
self
.
x
.
shape
self
.
w
=
paddle
.
randn
([
4
])
self
.
w
=
paddle
.
randn
([
4
])
self
.
b
=
paddle
.
randn
([
4
])
self
.
b
=
paddle
.
randn
([
4
])
self
.
x
.
stop_gradient
=
False
self
.
x
.
stop_gradient
=
False
...
@@ -104,7 +104,7 @@ class TestPrimForwardAndBackward(unittest.TestCase):
...
@@ -104,7 +104,7 @@ class TestPrimForwardAndBackward(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
n_shape
=
x
.
shape
[
1
:]
self
.
n_shape
=
self
.
x
.
shape
self
.
w
=
paddle
.
randn
([
4
])
self
.
w
=
paddle
.
randn
([
4
])
self
.
b
=
paddle
.
randn
([
4
])
self
.
b
=
paddle
.
randn
([
4
])
self
.
x
.
stop_gradient
=
False
self
.
x
.
stop_gradient
=
False
...
...
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm.py
浏览文件 @
82713eb6
...
@@ -20,7 +20,6 @@ from utils import TOLERANCE
...
@@ -20,7 +20,6 @@ from utils import TOLERANCE
import
paddle
import
paddle
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle
import
_C_ops
,
in_dynamic_mode
def
generate_data
(
shape1
,
shape2
,
shape3
,
dtype
=
"float32"
):
def
generate_data
(
shape1
,
shape2
,
shape3
,
dtype
=
"float32"
):
...
@@ -39,7 +38,6 @@ class Attr:
...
@@ -39,7 +38,6 @@ class Attr:
self
.
shape2
=
None
self
.
shape2
=
None
self
.
shape3
=
None
self
.
shape3
=
None
def
set_dtype
(
self
,
dtype
)
->
None
:
def
set_dtype
(
self
,
dtype
)
->
None
:
self
.
dtype
=
dtype
self
.
dtype
=
dtype
return
return
...
@@ -66,14 +64,15 @@ attrs = Attr()
...
@@ -66,14 +64,15 @@ attrs = Attr()
def
fn
(
x
,
norm_shape
,
w
,
b
):
def
fn
(
x
,
norm_shape
,
w
,
b
):
return
F
.
layer_norm
(
x
,
norm_shape
,
w
,
b
)
return
F
.
layer_norm
(
x
,
norm_shape
,
w
,
b
)
def
layer_norm_
(
input
,
weight
,
bias
,
epsilon
=
1e-05
,
begin_norm_axis
=
0
):
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
input
.
shape
))
def
layer_norm_
(
input
,
weight
,
bias
,
epsilon
=
1e-05
,
begin_norm_axis
=
0
):
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
input
.
shape
))
mean
=
paddle
.
mean
(
input
,
axis
=
axis
,
keepdim
=
True
)
mean
=
paddle
.
mean
(
input
,
axis
=
axis
,
keepdim
=
True
)
t1
=
input
-
mean
t1
=
input
-
mean
t2
=
paddle
.
pow
(
t1
,
2.0
)
t2
=
paddle
.
pow
(
t1
,
2.0
)
t3
=
paddle
.
mean
(
t2
,
axis
=
axis
,
keepdim
=
True
)
t3
=
paddle
.
mean
(
t2
,
axis
=
axis
,
keepdim
=
True
)
t4
=
t3
+
epsilon
t4
=
t3
+
epsilon
t5
=
paddle
.
sqrt
(
t4
)
t5
=
paddle
.
sqrt
(
t4
)
t7
=
t1
/
t5
t7
=
t1
/
t5
out
=
t7
out
=
t7
if
weight
is
not
None
:
if
weight
is
not
None
:
...
@@ -85,12 +84,12 @@ def layer_norm_ (input, weight, bias, epsilon=1e-05, begin_norm_axis = 0):
...
@@ -85,12 +84,12 @@ def layer_norm_ (input, weight, bias, epsilon=1e-05, begin_norm_axis = 0):
return
out
return
out
def
composite_forward
(
x
,
norm_shape
,
w
,
b
):
def
composite_forward
(
x
,
norm_shape
,
w
,
b
):
b_axis
=
len
(
x
.
shape
)
-
len
(
norm_shape
)
b_axis
=
len
(
x
.
shape
)
-
len
(
norm_shape
)
return
layer_norm_
(
x
,
w
,
b
,
begin_norm_axis
=
b_axis
)
return
layer_norm_
(
x
,
w
,
b
,
begin_norm_axis
=
b_axis
)
def
expect_forward
(
x
,
norm_shape
,
w
,
b
):
def
expect_forward
(
x
,
norm_shape
,
w
,
b
):
return
fn
(
x
,
norm_shape
,
w
,
b
)
return
fn
(
x
,
norm_shape
,
w
,
b
)
...
@@ -98,10 +97,10 @@ def expect_forward(x, norm_shape, w, b):
...
@@ -98,10 +97,10 @@ def expect_forward(x, norm_shape, w, b):
class
TestCompositelayer_norm
(
unittest
.
TestCase
):
class
TestCompositelayer_norm
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
n_shape
=
[[
3
,
4
],[
3
],
[
2
,
3
]]
self
.
n_shape
=
[[
3
,
4
],
[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],
[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
def
cal_composite
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
def
cal_composite
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
paddle
.
enable_static
()
paddle
.
enable_static
()
...
@@ -115,9 +114,7 @@ class TestCompositelayer_norm(unittest.TestCase):
...
@@ -115,9 +114,7 @@ class TestCompositelayer_norm(unittest.TestCase):
w
=
paddle
.
static
.
data
(
w
=
paddle
.
static
.
data
(
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
)
)
b
=
paddle
.
static
.
data
(
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
))
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
)
)
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
blocks
=
main_program
.
blocks
blocks
=
main_program
.
blocks
...
@@ -141,7 +138,8 @@ class TestCompositelayer_norm(unittest.TestCase):
...
@@ -141,7 +138,8 @@ class TestCompositelayer_norm(unittest.TestCase):
'w'
:
weight
,
'w'
:
weight
,
'b'
:
bias
,
'b'
:
bias
,
},
},
fetch_list
=
[
y
])
fetch_list
=
[
y
],
)
paddle
.
disable_static
()
paddle
.
disable_static
()
core
.
_set_prim_forward_enabled
(
False
)
core
.
_set_prim_forward_enabled
(
False
)
return
res
return
res
...
@@ -154,12 +152,9 @@ class TestCompositelayer_norm(unittest.TestCase):
...
@@ -154,12 +152,9 @@ class TestCompositelayer_norm(unittest.TestCase):
b_p
=
paddle
.
to_tensor
(
b
)
b_p
=
paddle
.
to_tensor
(
b
)
expect
=
expect_forward
(
x_p
,
n_shape
,
w_p
,
b_p
).
numpy
()
expect
=
expect_forward
(
x_p
,
n_shape
,
w_p
,
b_p
).
numpy
()
# actual = self.cal_composite(x_p, n_shape, w_p, b_p)
print
(
"expect = "
,
expect
)
#actual = self.cal_composite(x_p, n_shape, w_p, b_p)
actual
=
composite_forward
(
x_p
,
n_shape
,
w_p
,
b_p
).
numpy
()
actual
=
composite_forward
(
x_p
,
n_shape
,
w_p
,
b_p
).
numpy
()
print
(
"actual = "
,
actual
)
assert
expect
.
dtype
==
actual
.
dtype
assert
expect
.
dtype
==
actual
.
dtype
np
.
testing
.
assert_allclose
(
np
.
testing
.
assert_allclose
(
expect
,
expect
,
...
@@ -180,9 +175,14 @@ class TestCompositelayer_norm(unittest.TestCase):
...
@@ -180,9 +175,14 @@ class TestCompositelayer_norm(unittest.TestCase):
def
test_forward
(
self
):
def
test_forward
(
self
):
for
j
in
self
.
dtypes
:
for
j
in
self
.
dtypes
:
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
attrs
.
set_dtype
(
j
)
attrs
.
set_dtype
(
j
)
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
])
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
],
)
self
.
compare_forward
()
self
.
compare_forward
()
...
...
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm_grad.py
浏览文件 @
82713eb6
...
@@ -20,7 +20,6 @@ from utils import TOLERANCE
...
@@ -20,7 +20,6 @@ from utils import TOLERANCE
import
paddle
import
paddle
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle
import
_C_ops
,
in_dynamic_mode
def
generate_data
(
shape1
,
shape2
,
shape3
,
dtype
=
"float32"
):
def
generate_data
(
shape1
,
shape2
,
shape3
,
dtype
=
"float32"
):
...
@@ -39,7 +38,6 @@ class Attr:
...
@@ -39,7 +38,6 @@ class Attr:
self
.
shape2
=
None
self
.
shape2
=
None
self
.
shape3
=
None
self
.
shape3
=
None
def
set_dtype
(
self
,
dtype
)
->
None
:
def
set_dtype
(
self
,
dtype
)
->
None
:
self
.
dtype
=
dtype
self
.
dtype
=
dtype
return
return
...
@@ -66,6 +64,7 @@ attrs = Attr()
...
@@ -66,6 +64,7 @@ attrs = Attr()
def
fn
(
x
,
norm_shape
,
w
,
b
):
def
fn
(
x
,
norm_shape
,
w
,
b
):
return
F
.
layer_norm
(
x
,
norm_shape
,
w
,
b
)
return
F
.
layer_norm
(
x
,
norm_shape
,
w
,
b
)
# def layer_norm_ (input, weight, bias, epsilon=1e-05, begin_norm_axis = 0):
# def layer_norm_ (input, weight, bias, epsilon=1e-05, begin_norm_axis = 0):
# axis = np.arange(begin_norm_axis,len(input.shape))
# axis = np.arange(begin_norm_axis,len(input.shape))
# mean = paddle.mean(input, axis=axis, keepdim=True)
# mean = paddle.mean(input, axis=axis, keepdim=True)
...
@@ -90,11 +89,10 @@ def fn(x, norm_shape, w, b):
...
@@ -90,11 +89,10 @@ def fn(x, norm_shape, w, b):
# return layer_norm_(x, w, b, begin_norm_axis=b_axis)
# return layer_norm_(x, w, b, begin_norm_axis=b_axis)
def
expect_backward
(
x
,
norm_shape
,
w
,
b
):
def
expect_backward
(
x
,
norm_shape
,
w
,
b
):
paddle
.
disable_static
()
paddle
.
disable_static
()
x
.
stop_gradient
=
False
x
.
stop_gradient
=
False
res
=
fn
(
x
,
norm_shape
,
w
,
b
)
res
=
fn
(
x
,
norm_shape
,
w
,
b
)
gradients
=
paddle
.
grad
(
res
,
x
)
gradients
=
paddle
.
grad
(
res
,
x
)
return
gradients
return
gradients
...
@@ -103,10 +101,10 @@ def expect_backward(x, norm_shape, w, b):
...
@@ -103,10 +101,10 @@ def expect_backward(x, norm_shape, w, b):
class
TestCompositelayer_norm
(
unittest
.
TestCase
):
class
TestCompositelayer_norm
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
n_shape
=
[[
3
,
4
],[
3
],
[
2
,
3
]]
self
.
n_shape
=
[[
3
,
4
],
[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],
[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
def
cal_composite_backward
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
def
cal_composite_backward
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
paddle
.
enable_static
()
paddle
.
enable_static
()
...
@@ -121,9 +119,7 @@ class TestCompositelayer_norm(unittest.TestCase):
...
@@ -121,9 +119,7 @@ class TestCompositelayer_norm(unittest.TestCase):
w
=
paddle
.
static
.
data
(
w
=
paddle
.
static
.
data
(
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
)
)
b
=
paddle
.
static
.
data
(
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
))
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
)
)
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
blocks
=
main_program
.
blocks
blocks
=
main_program
.
blocks
...
@@ -153,7 +149,8 @@ class TestCompositelayer_norm(unittest.TestCase):
...
@@ -153,7 +149,8 @@ class TestCompositelayer_norm(unittest.TestCase):
'w'
:
weight
,
'w'
:
weight
,
'b'
:
bias
,
'b'
:
bias
,
},
},
fetch_list
=
[
z
])
fetch_list
=
[
z
],
)
paddle
.
disable_static
()
paddle
.
disable_static
()
core
.
_set_prim_forward_enabled
(
False
)
core
.
_set_prim_forward_enabled
(
False
)
return
res
return
res
...
@@ -188,9 +185,14 @@ class TestCompositelayer_norm(unittest.TestCase):
...
@@ -188,9 +185,14 @@ class TestCompositelayer_norm(unittest.TestCase):
def
test_backward
(
self
):
def
test_backward
(
self
):
for
j
in
self
.
dtypes
:
for
j
in
self
.
dtypes
:
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
attrs
.
set_dtype
(
j
)
attrs
.
set_dtype
(
j
)
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
])
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
],
)
self
.
compare_backward
()
self
.
compare_backward
()
...
@@ -198,10 +200,10 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
...
@@ -198,10 +200,10 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
core
.
_set_prim_backward_enabled
(
True
)
core
.
_set_prim_backward_enabled
(
True
)
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
n_shape
=
[[
3
,
4
],[
3
],
[
2
,
3
]]
self
.
n_shape
=
[[
3
,
4
],
[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],
[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
def
cal_composite_backward
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
def
cal_composite_backward
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
paddle
.
enable_static
()
paddle
.
enable_static
()
...
@@ -216,9 +218,7 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
...
@@ -216,9 +218,7 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
w
=
paddle
.
static
.
data
(
w
=
paddle
.
static
.
data
(
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
)
)
b
=
paddle
.
static
.
data
(
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
))
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
)
)
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
blocks
=
main_program
.
blocks
blocks
=
main_program
.
blocks
...
@@ -234,7 +234,8 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
...
@@ -234,7 +234,8 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
'w'
:
weight
,
'w'
:
weight
,
'b'
:
bias
,
'b'
:
bias
,
},
},
fetch_list
=
[
z
])
fetch_list
=
[
z
],
)
paddle
.
disable_static
()
paddle
.
disable_static
()
core
.
_set_prim_all_enabled
(
False
)
core
.
_set_prim_all_enabled
(
False
)
return
res
return
res
...
@@ -269,9 +270,14 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
...
@@ -269,9 +270,14 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
def
test_prim_backward
(
self
):
def
test_prim_backward
(
self
):
for
j
in
self
.
dtypes
:
for
j
in
self
.
dtypes
:
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
attrs
.
set_dtype
(
j
)
attrs
.
set_dtype
(
j
)
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
])
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
],
)
self
.
compare_backward
()
self
.
compare_backward
()
...
...
python/paddle/incubate/autograd/composite_rules.py
浏览文件 @
82713eb6
...
@@ -104,19 +104,19 @@ def composite_batchnorm(
...
@@ -104,19 +104,19 @@ def composite_batchnorm(
@
REGISTER_COMPOSITE
(
'layer_norm'
)
@
REGISTER_COMPOSITE
(
'layer_norm'
)
def
layernorm_composite
(
x
,
scale
,
bias
,
epsilon
,
begin_norm_axis
):
def
layernorm_composite
(
x
,
scale
,
bias
,
epsilon
,
begin_norm_axis
):
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
x
.
shape
))
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
x
.
shape
))
mean_
=
mean
(
x
,
axis
=
axis
,
keepdim
=
True
)
mean_
=
mean
(
x
,
axis
=
axis
,
keepdim
=
True
)
difference
=
x
-
mean_
difference
=
x
-
mean_
var_tmp1
=
pow
(
difference
,
2.0
)
var_tmp1
=
pow
(
difference
,
2.0
)
variance
=
mean
(
var_tmp1
,
axis
=
axis
,
keepdim
=
True
)
variance
=
mean
(
var_tmp1
,
axis
=
axis
,
keepdim
=
True
)
var_tmp3
=
variance
+
epsilon
var_tmp3
=
variance
+
epsilon
sqrt_var
=
sqrt
(
var_tmp3
)
sqrt_var
=
sqrt
(
var_tmp3
)
out
=
difference
/
sqrt_var
out
=
difference
/
sqrt_var
if
scale
is
not
None
:
if
scale
is
not
None
:
scale
=
reshape
(
scale
,
x
.
shape
[
begin_norm_axis
:])
scale
=
reshape
(
scale
,
x
.
shape
[
begin_norm_axis
:])
out
=
t7
*
broadcast_to
(
scale
,
out
.
shape
)
out
=
out
*
broadcast_to
(
scale
,
out
.
shape
)
if
bias
is
not
None
:
if
bias
is
not
None
:
bias
=
reshape
(
bias
,
x
.
shape
[
begin_norm_axis
:])
bias
=
reshape
(
bias
,
x
.
shape
[
begin_norm_axis
:])
out
=
out
+
broadcast_to
(
bias
,
out
.
shape
)
out
=
out
+
broadcast_to
(
bias
,
out
.
shape
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录