Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
82713eb6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82713eb6
编写于
2月 10, 2023
作者:
W
wangruting
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init layer_norm
上级
637dfe49
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
77 addition
and
71 deletion
+77
-71
python/paddle/fluid/tests/unittests/dygraph_to_static/test_cinn_prim_layer_norm.py
.../unittests/dygraph_to_static/test_cinn_prim_layer_norm.py
+4
-4
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm.py
...unittests/prim/composite_ops/test_composite_layer_norm.py
+27
-27
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm_grad.py
...ests/prim/composite_ops/test_composite_layer_norm_grad.py
+37
-31
python/paddle/incubate/autograd/composite_rules.py
python/paddle/incubate/autograd/composite_rules.py
+9
-9
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_cinn_prim_layer_norm.py
浏览文件 @
82713eb6
...
...
@@ -49,7 +49,7 @@ class TestPrimForward(unittest.TestCase):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
n_shape
=
x
.
shape
[
1
:]
self
.
n_shape
=
self
.
x
.
shape
self
.
w
=
paddle
.
randn
([
4
])
self
.
b
=
paddle
.
randn
([
4
])
self
.
x
.
stop_gradient
=
False
...
...
@@ -86,7 +86,7 @@ class TestPrimForward(unittest.TestCase):
self
.
assertTrue
(
'layer_norm'
not
in
fwd_ops
)
def
test_cinn_prim_forward
(
self
):
dy_res
=
self
.
train
(
use_prim
=
False
)
cinn_res
=
self
.
train
(
use_prim
=
True
)
...
...
@@ -94,7 +94,7 @@ class TestPrimForward(unittest.TestCase):
np
.
testing
.
assert_allclose
(
cinn_res
[
i
],
dy_res
[
i
],
rtol
=
1e-6
,
atol
=
1e-6
)
class
TestPrimForwardAndBackward
(
unittest
.
TestCase
):
"""
...
...
@@ -104,7 +104,7 @@ class TestPrimForwardAndBackward(unittest.TestCase):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
n_shape
=
x
.
shape
[
1
:]
self
.
n_shape
=
self
.
x
.
shape
self
.
w
=
paddle
.
randn
([
4
])
self
.
b
=
paddle
.
randn
([
4
])
self
.
x
.
stop_gradient
=
False
...
...
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm.py
浏览文件 @
82713eb6
...
...
@@ -20,7 +20,6 @@ from utils import TOLERANCE
import
paddle
import
paddle.nn.functional
as
F
from
paddle.fluid
import
core
from
paddle
import
_C_ops
,
in_dynamic_mode
def
generate_data
(
shape1
,
shape2
,
shape3
,
dtype
=
"float32"
):
...
...
@@ -38,7 +37,6 @@ class Attr:
self
.
shape1
=
None
self
.
shape2
=
None
self
.
shape3
=
None
def
set_dtype
(
self
,
dtype
)
->
None
:
self
.
dtype
=
dtype
...
...
@@ -66,14 +64,15 @@ attrs = Attr()
def
fn
(
x
,
norm_shape
,
w
,
b
):
return
F
.
layer_norm
(
x
,
norm_shape
,
w
,
b
)
def
layer_norm_
(
input
,
weight
,
bias
,
epsilon
=
1e-05
,
begin_norm_axis
=
0
):
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
input
.
shape
))
def
layer_norm_
(
input
,
weight
,
bias
,
epsilon
=
1e-05
,
begin_norm_axis
=
0
):
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
input
.
shape
))
mean
=
paddle
.
mean
(
input
,
axis
=
axis
,
keepdim
=
True
)
t1
=
input
-
mean
t2
=
paddle
.
pow
(
t1
,
2.0
)
t3
=
paddle
.
mean
(
t2
,
axis
=
axis
,
keepdim
=
True
)
t2
=
paddle
.
pow
(
t1
,
2.0
)
t3
=
paddle
.
mean
(
t2
,
axis
=
axis
,
keepdim
=
True
)
t4
=
t3
+
epsilon
t5
=
paddle
.
sqrt
(
t4
)
t5
=
paddle
.
sqrt
(
t4
)
t7
=
t1
/
t5
out
=
t7
if
weight
is
not
None
:
...
...
@@ -82,15 +81,15 @@ def layer_norm_ (input, weight, bias, epsilon=1e-05, begin_norm_axis = 0):
if
bias
is
not
None
:
bias
=
paddle
.
reshape
(
bias
,
input
.
shape
[
begin_norm_axis
:])
out
=
out
+
paddle
.
broadcast_to
(
bias
,
out
.
shape
)
return
out
def
composite_forward
(
x
,
norm_shape
,
w
,
b
):
b_axis
=
len
(
x
.
shape
)
-
len
(
norm_shape
)
return
layer_norm_
(
x
,
w
,
b
,
begin_norm_axis
=
b_axis
)
def
expect_forward
(
x
,
norm_shape
,
w
,
b
):
return
fn
(
x
,
norm_shape
,
w
,
b
)
...
...
@@ -98,10 +97,10 @@ def expect_forward(x, norm_shape, w, b):
class
TestCompositelayer_norm
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
n_shape
=
[[
3
,
4
],[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
self
.
n_shape
=
[[
3
,
4
],
[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],
[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
def
cal_composite
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
paddle
.
enable_static
()
...
...
@@ -115,11 +114,9 @@ class TestCompositelayer_norm(unittest.TestCase):
w
=
paddle
.
static
.
data
(
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
)
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
)
)
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
))
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
blocks
=
main_program
.
blocks
fwd_ops
=
[
op
.
type
for
op
in
blocks
[
0
].
ops
]
...
...
@@ -135,13 +132,14 @@ class TestCompositelayer_norm(unittest.TestCase):
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
startup_program
)
res
=
exe
.
run
(
main_program
,
main_program
,
feed
=
{
'x'
:
inputs
,
'w'
:
weight
,
'b'
:
bias
,
},
fetch_list
=
[
y
])
},
fetch_list
=
[
y
],
)
paddle
.
disable_static
()
core
.
_set_prim_forward_enabled
(
False
)
return
res
...
...
@@ -154,12 +152,9 @@ class TestCompositelayer_norm(unittest.TestCase):
b_p
=
paddle
.
to_tensor
(
b
)
expect
=
expect_forward
(
x_p
,
n_shape
,
w_p
,
b_p
).
numpy
()
print
(
"expect = "
,
expect
)
#actual = self.cal_composite(x_p, n_shape, w_p, b_p)
# actual = self.cal_composite(x_p, n_shape, w_p, b_p)
actual
=
composite_forward
(
x_p
,
n_shape
,
w_p
,
b_p
).
numpy
()
print
(
"actual = "
,
actual
)
assert
expect
.
dtype
==
actual
.
dtype
np
.
testing
.
assert_allclose
(
expect
,
...
...
@@ -180,9 +175,14 @@ class TestCompositelayer_norm(unittest.TestCase):
def
test_forward
(
self
):
for
j
in
self
.
dtypes
:
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
attrs
.
set_dtype
(
j
)
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
])
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
],
)
self
.
compare_forward
()
...
...
python/paddle/fluid/tests/unittests/prim/composite_ops/test_composite_layer_norm_grad.py
浏览文件 @
82713eb6
...
...
@@ -20,7 +20,6 @@ from utils import TOLERANCE
import
paddle
import
paddle.nn.functional
as
F
from
paddle.fluid
import
core
from
paddle
import
_C_ops
,
in_dynamic_mode
def
generate_data
(
shape1
,
shape2
,
shape3
,
dtype
=
"float32"
):
...
...
@@ -38,7 +37,6 @@ class Attr:
self
.
shape1
=
None
self
.
shape2
=
None
self
.
shape3
=
None
def
set_dtype
(
self
,
dtype
)
->
None
:
self
.
dtype
=
dtype
...
...
@@ -66,6 +64,7 @@ attrs = Attr()
def
fn
(
x
,
norm_shape
,
w
,
b
):
return
F
.
layer_norm
(
x
,
norm_shape
,
w
,
b
)
# def layer_norm_ (input, weight, bias, epsilon=1e-05, begin_norm_axis = 0):
# axis = np.arange(begin_norm_axis,len(input.shape))
# mean = paddle.mean(input, axis=axis, keepdim=True)
...
...
@@ -82,7 +81,7 @@ def fn(x, norm_shape, w, b):
# if bias is not None:
# bias = paddle.reshape(bias, input.shape[begin_norm_axis:])
# out = out + paddle.broadcast_to(bias, out.shape)
# return out
# def composite_forward(x, norm_shape, w, b):
...
...
@@ -90,11 +89,10 @@ def fn(x, norm_shape, w, b):
# return layer_norm_(x, w, b, begin_norm_axis=b_axis)
def
expect_backward
(
x
,
norm_shape
,
w
,
b
):
paddle
.
disable_static
()
x
.
stop_gradient
=
False
res
=
fn
(
x
,
norm_shape
,
w
,
b
)
res
=
fn
(
x
,
norm_shape
,
w
,
b
)
gradients
=
paddle
.
grad
(
res
,
x
)
return
gradients
...
...
@@ -103,10 +101,10 @@ def expect_backward(x, norm_shape, w, b):
class
TestCompositelayer_norm
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
n_shape
=
[[
3
,
4
],[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
self
.
n_shape
=
[[
3
,
4
],
[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],
[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
def
cal_composite_backward
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
paddle
.
enable_static
()
...
...
@@ -121,11 +119,9 @@ class TestCompositelayer_norm(unittest.TestCase):
w
=
paddle
.
static
.
data
(
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
)
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
)
)
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
))
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
blocks
=
main_program
.
blocks
fwd_ops
=
[
op
.
type
for
op
in
blocks
[
0
].
ops
]
...
...
@@ -147,13 +143,14 @@ class TestCompositelayer_norm(unittest.TestCase):
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
startup_program
)
res
=
exe
.
run
(
main_program
,
main_program
,
feed
=
{
'x'
:
inputs
,
'w'
:
weight
,
'b'
:
bias
,
},
fetch_list
=
[
z
])
},
fetch_list
=
[
z
],
)
paddle
.
disable_static
()
core
.
_set_prim_forward_enabled
(
False
)
return
res
...
...
@@ -188,9 +185,14 @@ class TestCompositelayer_norm(unittest.TestCase):
def
test_backward
(
self
):
for
j
in
self
.
dtypes
:
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
attrs
.
set_dtype
(
j
)
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
])
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
],
)
self
.
compare_backward
()
...
...
@@ -198,10 +200,10 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
def
setUp
(
self
):
core
.
_set_prim_backward_enabled
(
True
)
self
.
dtypes
=
[
"float16"
,
"float32"
]
self
.
n_shape
=
[[
3
,
4
],[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
self
.
n_shape
=
[[
3
,
4
],
[
3
],
[
2
,
3
]]
self
.
shape1s
=
[[
3
,
4
],
[
2
,
4
,
3
],
[
2
,
2
,
3
]]
self
.
shape2s
=
[[
12
],
[
3
],
[
6
]]
self
.
shape3s
=
[[
12
],
[
3
],
[
6
]]
def
cal_composite_backward
(
self
,
inputs
,
norm_shape
,
weight
,
bias
):
paddle
.
enable_static
()
...
...
@@ -216,11 +218,9 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
w
=
paddle
.
static
.
data
(
'w'
,
shape
=
weight
.
shape
,
dtype
=
str
(
weight
.
dtype
)
)
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
)
)
b
=
paddle
.
static
.
data
(
'b'
,
shape
=
bias
.
shape
,
dtype
=
str
(
bias
.
dtype
))
y
=
fn
(
x
,
norm_shape
,
w
,
b
)
blocks
=
main_program
.
blocks
paddle
.
incubate
.
autograd
.
to_prim
(
blocks
)
z
=
paddle
.
static
.
gradients
([
y
],
x
)
...
...
@@ -228,13 +228,14 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
startup_program
)
res
=
exe
.
run
(
main_program
,
main_program
,
feed
=
{
'x'
:
inputs
,
'w'
:
weight
,
'b'
:
bias
,
},
fetch_list
=
[
z
])
},
fetch_list
=
[
z
],
)
paddle
.
disable_static
()
core
.
_set_prim_all_enabled
(
False
)
return
res
...
...
@@ -269,9 +270,14 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
def
test_prim_backward
(
self
):
for
j
in
self
.
dtypes
:
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
for
t
in
range
(
0
,
len
(
self
.
shape1s
)):
attrs
.
set_dtype
(
j
)
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
])
attrs
.
set_shape
(
self
.
n_shape
[
t
],
self
.
shape1s
[
t
],
self
.
shape2s
[
t
],
self
.
shape3s
[
t
],
)
self
.
compare_backward
()
...
...
python/paddle/incubate/autograd/composite_rules.py
浏览文件 @
82713eb6
...
...
@@ -104,21 +104,21 @@ def composite_batchnorm(
@
REGISTER_COMPOSITE
(
'layer_norm'
)
def
layernorm_composite
(
x
,
scale
,
bias
,
epsilon
,
begin_norm_axis
):
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
x
.
shape
))
def
layernorm_composite
(
x
,
scale
,
bias
,
epsilon
,
begin_norm_axis
):
axis
=
np
.
arange
(
begin_norm_axis
,
len
(
x
.
shape
))
mean_
=
mean
(
x
,
axis
=
axis
,
keepdim
=
True
)
difference
=
x
-
mean_
var_tmp1
=
pow
(
difference
,
2.0
)
variance
=
mean
(
var_tmp1
,
axis
=
axis
,
keepdim
=
True
)
var_tmp1
=
pow
(
difference
,
2.0
)
variance
=
mean
(
var_tmp1
,
axis
=
axis
,
keepdim
=
True
)
var_tmp3
=
variance
+
epsilon
sqrt_var
=
sqrt
(
var_tmp3
)
sqrt_var
=
sqrt
(
var_tmp3
)
out
=
difference
/
sqrt_var
if
scale
is
not
None
:
scale
=
reshape
(
scale
,
x
.
shape
[
begin_norm_axis
:])
out
=
t7
*
broadcast_to
(
scale
,
out
.
shape
)
out
=
out
*
broadcast_to
(
scale
,
out
.
shape
)
if
bias
is
not
None
:
bias
=
reshape
(
bias
,
x
.
shape
[
begin_norm_axis
:])
out
=
out
+
broadcast_to
(
bias
,
out
.
shape
)
return
out
,
mean_
,
variance
\ No newline at end of file
return
out
,
mean_
,
variance
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录