Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
82399bdf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
82399bdf
编写于
9月 20, 2022
作者:
W
weishengying
提交者:
GitHub
9月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add symbolic shape deduction function for general Plugin mechanism (#46172)
上级
f769f850
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
142 addition
and
23 deletion
+142
-23
paddle/fluid/inference/tensorrt/dynamic_shape_infermeta.cc
paddle/fluid/inference/tensorrt/dynamic_shape_infermeta.cc
+54
-0
paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_registry.h
...uid/inference/tensorrt/dynamic_shape_infermeta_registry.h
+2
-0
paddle/fluid/inference/tensorrt/plugin/generic_plugin.cu
paddle/fluid/inference/tensorrt/plugin/generic_plugin.cu
+25
-13
paddle/fluid/inference/tensorrt/plugin/generic_plugin.h
paddle/fluid/inference/tensorrt/plugin/generic_plugin.h
+5
-4
paddle/phi/core/kernel_context.h
paddle/phi/core/kernel_context.h
+7
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_instance_norm.py
.../unittests/ir/inference/test_trt_convert_instance_norm.py
+27
-1
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_yolo_box.py
...tests/unittests/ir/inference/test_trt_convert_yolo_box.py
+22
-5
未找到文件。
paddle/fluid/inference/tensorrt/dynamic_shape_infermeta.cc
浏览文件 @
82399bdf
...
@@ -54,7 +54,61 @@ nvinfer1::DimsExprs GatherNdInferMeta(
...
@@ -54,7 +54,61 @@ nvinfer1::DimsExprs GatherNdInferMeta(
}
}
return
output
;
return
output
;
}
}
nvinfer1
::
DimsExprs
YoloBoxInferMeta
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
,
// NOLINT
const
framework
::
OpDesc
&
op_desc
)
{
PADDLE_ENFORCE_EQ
(
nb_inputs
,
2
,
phi
::
errors
::
InvalidArgument
(
"inputs of yolo_box should be equal to 2, "
"But received (%s)"
,
nb_inputs
));
const
nvinfer1
::
DimsExprs
dim_x
=
inputs
[
0
];
auto
anchors
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"anchors"
));
int
anchor_num
=
anchors
.
size
()
/
2
;
// box_num = dim_x[2] * dim_x[3] * anchor_num;
const
nvinfer1
::
IDimensionExpr
*
box_num
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
dim_x
.
d
[
2
],
*
dim_x
.
d
[
3
]),
*
expr_builder
.
constant
(
anchor_num
));
nvinfer1
::
DimsExprs
output
;
output
.
nbDims
=
3
;
if
(
output_index
==
0
)
{
output
.
d
[
0
]
=
dim_x
.
d
[
0
];
output
.
d
[
1
]
=
box_num
;
output
.
d
[
2
]
=
expr_builder
.
constant
(
4
);
}
else
{
auto
class_num
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"class_num"
));
output
.
d
[
0
]
=
dim_x
.
d
[
0
];
output
.
d
[
1
]
=
box_num
;
output
.
d
[
2
]
=
expr_builder
.
constant
(
class_num
);
}
return
output
;
}
nvinfer1
::
DimsExprs
InstanceNormInferMeta
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
,
// NOLINT
const
framework
::
OpDesc
&
op_desc
)
{
nvinfer1
::
DimsExprs
x_dims
=
inputs
[
0
];
return
x_dims
;
}
PD_REGISTER_DYNAMIC_INFER_META_FN
(
gather_nd
,
GatherNdInferMeta
);
PD_REGISTER_DYNAMIC_INFER_META_FN
(
gather_nd
,
GatherNdInferMeta
);
PD_REGISTER_DYNAMIC_INFER_META_FN
(
yolo_box
,
YoloBoxInferMeta
);
PD_REGISTER_DYNAMIC_INFER_META_FN
(
instance_norm
,
InstanceNormInferMeta
);
}
// namespace tensorrt
}
// namespace tensorrt
}
// namespace inference
}
// namespace inference
}
// namespace paddle
}
// namespace paddle
paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_registry.h
浏览文件 @
82399bdf
...
@@ -21,6 +21,8 @@ namespace inference {
...
@@ -21,6 +21,8 @@ namespace inference {
namespace
tensorrt
{
namespace
tensorrt
{
USE_TRT_DYNAMIC_INFER_META_FN
(
gather_nd
);
USE_TRT_DYNAMIC_INFER_META_FN
(
gather_nd
);
USE_TRT_DYNAMIC_INFER_META_FN
(
yolo_box
);
USE_TRT_DYNAMIC_INFER_META_FN
(
instance_norm
);
}
// namespace tensorrt
}
// namespace tensorrt
}
// namespace inference
}
// namespace inference
}
// namespace paddle
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/generic_plugin.cu
浏览文件 @
82399bdf
...
@@ -216,6 +216,7 @@ void BuildPhiKernelContextAttr(const framework::OpDesc& op_desc,
...
@@ -216,6 +216,7 @@ void BuildPhiKernelContextAttr(const framework::OpDesc& op_desc,
}
}
}
}
}
}
CHECK_EQ
(
attr_names
.
size
(),
kernel_context
->
AttrsSize
());
}
}
GenericPlugin
::
GenericPlugin
(
GenericPlugin
::
GenericPlugin
(
...
@@ -333,12 +334,16 @@ int GenericPlugin::initialize() TRT_NOEXCEPT {
...
@@ -333,12 +334,16 @@ int GenericPlugin::initialize() TRT_NOEXCEPT {
platform
::
CUDAPlace
place
(
platform
::
GetCurrentDeviceId
());
platform
::
CUDAPlace
place
(
platform
::
GetCurrentDeviceId
());
auto
*
dev_ctx
=
static_cast
<
phi
::
GPUContext
*>
(
pool
.
Get
(
place
));
auto
*
dev_ctx
=
static_cast
<
phi
::
GPUContext
*>
(
pool
.
Get
(
place
));
phi_kernel_context_
=
new
phi
::
KernelContext
(
dev_ctx
);
if
(
!
phi_kernel_context_
)
{
dense_tensor_inputs_
=
new
std
::
vector
<
phi
::
DenseTensor
>
(
getNbInputs
());
phi_kernel_context_
=
new
phi
::
KernelContext
(
dev_ctx
);
dense_tensor_outputs_
=
new
std
::
vector
<
phi
::
DenseTensor
>
(
getNbOutputs
());
BuildPhiKernelContextAttr
(
op_desc_
,
phi_kernel_context_
,
phi_kernel_signature
,
phi_kernel
);
}
if
(
!
dense_tensor_inputs_
)
dense_tensor_inputs_
=
new
std
::
vector
<
phi
::
DenseTensor
>
(
getNbInputs
());
if
(
!
dense_tensor_outputs_
)
dense_tensor_outputs_
=
new
std
::
vector
<
phi
::
DenseTensor
>
(
getNbOutputs
());
BuildPhiKernelContextAttr
(
op_desc_
,
phi_kernel_context_
,
phi_kernel_signature
,
phi_kernel
);
return
0
;
return
0
;
}
}
...
@@ -387,26 +392,28 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
...
@@ -387,26 +392,28 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
platform
::
CUDAPlace
place
(
platform
::
GetCurrentDeviceId
());
platform
::
CUDAPlace
place
(
platform
::
GetCurrentDeviceId
());
// [TODO]now generic plugin do not support FP16 and INT8 precision
// [TODO]now generic plugin do not support FP16 and INT8 precision
auto
protoType2PhiType
=
[](
int
proto_type
)
->
phi
::
DataType
{
auto
protoType2PhiType
=
[](
int
proto_type
)
->
std
::
pair
<
phi
::
DataType
,
int
>
{
if
(
proto_type
==
if
(
proto_type
==
static_cast
<
int
>
(
framework
::
proto
::
VarType_Type
::
VarType_Type_FP32
))
static_cast
<
int
>
(
framework
::
proto
::
VarType_Type
::
VarType_Type_FP32
))
return
phi
::
DataType
::
FLOAT32
;
return
{
phi
::
DataType
::
FLOAT32
,
sizeof
(
float
)}
;
else
if
(
proto_type
==
else
if
(
proto_type
==
static_cast
<
int
>
(
static_cast
<
int
>
(
framework
::
proto
::
VarType_Type
::
VarType_Type_INT64
)
||
framework
::
proto
::
VarType_Type
::
VarType_Type_INT64
)
||
proto_type
==
proto_type
==
static_cast
<
int
>
(
static_cast
<
int
>
(
framework
::
proto
::
VarType_Type
::
VarType_Type_INT32
))
framework
::
proto
::
VarType_Type
::
VarType_Type_INT32
))
return
phi
::
DataType
::
INT32
;
return
{
phi
::
DataType
::
INT32
,
sizeof
(
int32_t
)}
;
else
if
(
proto_type
==
else
if
(
proto_type
==
static_cast
<
int
>
(
static_cast
<
int
>
(
framework
::
proto
::
VarType_Type
::
VarType_Type_BOOL
))
framework
::
proto
::
VarType_Type
::
VarType_Type_BOOL
))
return
phi
::
DataType
::
BOOL
;
return
{
phi
::
DataType
::
BOOL
,
sizeof
(
bool
)}
;
else
else
CHECK
(
false
)
<<
"precision is not supported"
;
CHECK
(
false
)
<<
"precision is not supported"
;
};
};
// input
// input
phi_kernel_context_
->
ClearInputOutput
();
for
(
int
i
=
0
;
i
<
getNbInputs
();
i
++
)
{
for
(
int
i
=
0
;
i
<
getNbInputs
();
i
++
)
{
auto
const
&
input_dims
=
input_desc
[
i
].
dims
;
auto
const
&
input_dims
=
input_desc
[
i
].
dims
;
...
@@ -417,11 +424,12 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
...
@@ -417,11 +424,12 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
int
input_numel
=
1
;
int
input_numel
=
1
;
for
(
int
k
=
0
;
k
<
input_shape
.
size
();
k
++
)
input_numel
*=
input_shape
[
k
];
for
(
int
k
=
0
;
k
<
input_shape
.
size
();
k
++
)
input_numel
*=
input_shape
[
k
];
phi
::
DenseTensorMeta
input_meta
(
protoType2PhiType
(
inputs_data_type_
[
i
]),
auto
data_type_and_size
=
protoType2PhiType
(
inputs_data_type_
[
i
]);
phi
::
DenseTensorMeta
input_meta
(
data_type_and_size
.
first
,
phi
::
make_ddim
(
input_shape
));
phi
::
make_ddim
(
input_shape
));
std
::
shared_ptr
<
phi
::
Allocation
>
input_alloc
(
std
::
shared_ptr
<
phi
::
Allocation
>
input_alloc
(
new
phi
::
Allocation
((
void
*
)(
inputs
[
i
]),
// NOLINT
new
phi
::
Allocation
((
void
*
)(
inputs
[
i
]),
// NOLINT
input_numel
*
sizeof
(
int32_t
)
,
input_numel
*
data_type_and_size
.
second
,
place
));
place
));
(
*
dense_tensor_inputs_
)[
i
]
=
(
*
dense_tensor_inputs_
)[
i
]
=
std
::
move
(
phi
::
DenseTensor
(
input_alloc
,
input_meta
));
std
::
move
(
phi
::
DenseTensor
(
input_alloc
,
input_meta
));
...
@@ -440,11 +448,12 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
...
@@ -440,11 +448,12 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
for
(
int
k
=
0
;
k
<
output_shape
.
size
();
k
++
)
for
(
int
k
=
0
;
k
<
output_shape
.
size
();
k
++
)
output_numel
*=
output_shape
[
k
];
output_numel
*=
output_shape
[
k
];
phi
::
DenseTensorMeta
output_meta
(
protoType2PhiType
(
outputs_data_type_
[
i
]),
auto
data_type_and_size
=
protoType2PhiType
(
inputs_data_type_
[
i
]);
phi
::
DenseTensorMeta
output_meta
(
data_type_and_size
.
first
,
phi
::
make_ddim
(
output_shape
));
phi
::
make_ddim
(
output_shape
));
std
::
shared_ptr
<
phi
::
Allocation
>
output_alloc
(
std
::
shared_ptr
<
phi
::
Allocation
>
output_alloc
(
new
phi
::
Allocation
(
reinterpret_cast
<
void
*>
(
outputs
[
i
]),
new
phi
::
Allocation
(
reinterpret_cast
<
void
*>
(
outputs
[
i
]),
output_numel
*
sizeof
(
float
)
,
output_numel
*
data_type_and_size
.
second
,
place
));
place
));
phi
::
DenseTensor
output_densetonsor
(
output_alloc
,
output_meta
);
phi
::
DenseTensor
output_densetonsor
(
output_alloc
,
output_meta
);
(
*
dense_tensor_outputs_
)[
i
]
=
(
*
dense_tensor_outputs_
)[
i
]
=
...
@@ -452,6 +461,9 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
...
@@ -452,6 +461,9 @@ int GenericPlugin::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
phi_kernel_context_
->
EmplaceBackOutput
(
&
((
*
dense_tensor_outputs_
)[
i
]));
phi_kernel_context_
->
EmplaceBackOutput
(
&
((
*
dense_tensor_outputs_
)[
i
]));
}
}
CHECK_EQ
(
phi_kernel_context_
->
InputsSize
(),
getNbInputs
());
CHECK_EQ
(
phi_kernel_context_
->
OutputsSize
(),
getNbOutputs
());
(
*
phi_kernel_
)(
phi_kernel_context_
);
(
*
phi_kernel_
)(
phi_kernel_context_
);
return
cudaGetLastError
()
!=
cudaSuccess
;
return
cudaGetLastError
()
!=
cudaSuccess
;
...
...
paddle/fluid/inference/tensorrt/plugin/generic_plugin.h
浏览文件 @
82399bdf
...
@@ -128,10 +128,11 @@ class GenericPlugin : public DynamicPluginTensorRT {
...
@@ -128,10 +128,11 @@ class GenericPlugin : public DynamicPluginTensorRT {
framework
::
OpDesc
op_desc_
;
framework
::
OpDesc
op_desc_
;
private:
private:
phi
::
KernelContext
*
phi_kernel_context_
;
const
phi
::
Kernel
*
phi_kernel_
{
nullptr
};
const
phi
::
Kernel
*
phi_kernel_
;
std
::
vector
<
phi
::
DenseTensor
>*
dense_tensor_inputs_
;
phi
::
KernelContext
*
phi_kernel_context_
{
nullptr
};
std
::
vector
<
phi
::
DenseTensor
>*
dense_tensor_outputs_
;
std
::
vector
<
phi
::
DenseTensor
>*
dense_tensor_inputs_
{
nullptr
};
std
::
vector
<
phi
::
DenseTensor
>*
dense_tensor_outputs_
{
nullptr
};
private:
private:
InputOutPutVarInfo
in_out_info_
;
InputOutPutVarInfo
in_out_info_
;
...
...
paddle/phi/core/kernel_context.h
浏览文件 @
82399bdf
...
@@ -144,6 +144,13 @@ class KernelContext {
...
@@ -144,6 +144,13 @@ class KernelContext {
size_t
OutputsSize
()
const
{
return
outputs_
.
size
();
}
size_t
OutputsSize
()
const
{
return
outputs_
.
size
();
}
size_t
AttrsSize
()
const
{
return
attrs_
.
size
();
}
size_t
AttrsSize
()
const
{
return
attrs_
.
size
();
}
void
ClearInputOutput
()
{
inputs_
.
clear
();
input_range_
.
clear
();
outputs_
.
clear
();
output_range_
.
clear
();
}
private:
private:
DeviceContext
*
dev_ctx_
;
DeviceContext
*
dev_ctx_
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_instance_norm.py
浏览文件 @
82399bdf
...
@@ -20,6 +20,7 @@ import paddle.inference as paddle_infer
...
@@ -20,6 +20,7 @@ import paddle.inference as paddle_infer
from
functools
import
partial
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
unittest
import
os
class
TrtConvertInstanceNormTest
(
TrtLayerAutoScanTest
):
class
TrtConvertInstanceNormTest
(
TrtLayerAutoScanTest
):
...
@@ -113,7 +114,9 @@ class TrtConvertInstanceNormTest(TrtLayerAutoScanTest):
...
@@ -113,7 +114,9 @@ class TrtConvertInstanceNormTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
dynamic_shape
or
self
.
in_dim
!=
4
:
if
dynamic_shape
:
return
1
,
2
if
self
.
in_dim
!=
4
:
return
0
,
3
return
0
,
3
return
1
,
2
return
1
,
2
...
@@ -139,7 +142,30 @@ class TrtConvertInstanceNormTest(TrtLayerAutoScanTest):
...
@@ -139,7 +142,30 @@ class TrtConvertInstanceNormTest(TrtLayerAutoScanTest):
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
and
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Half
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt in dynamic fp16 mode."
)
def
teller2
(
program_config
,
predictor_config
):
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
and
os
.
name
==
'nt'
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_SUPPORT
,
"The output has diff between gpu and trt in Windows."
)
def
test
(
self
):
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
self
.
run_test
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_yolo_box.py
浏览文件 @
82399bdf
...
@@ -19,6 +19,7 @@ import paddle.inference as paddle_infer
...
@@ -19,6 +19,7 @@ import paddle.inference as paddle_infer
from
functools
import
partial
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
unittest
import
os
class
TrtConvertYoloBoxTest
(
TrtLayerAutoScanTest
):
class
TrtConvertYoloBoxTest
(
TrtLayerAutoScanTest
):
...
@@ -139,10 +140,7 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
...
@@ -139,10 +140,7 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
dynamic_shape
==
True
:
return
1
,
4
return
0
,
5
else
:
return
1
,
4
attrs
=
[
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
...
@@ -166,7 +164,26 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
...
@@ -166,7 +164,26 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
attrs
,
True
),
1e-3
attrs
,
True
),
1e-3
def
add_skip_trt_case
(
self
):
def
add_skip_trt_case
(
self
):
pass
def
teller1
(
program_config
,
predictor_config
):
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
and
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Half
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt in dynamic fp16 mode."
)
def
teller2
(
program_config
,
predictor_config
):
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
and
os
.
name
==
'nt'
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_SUPPORT
,
"The output has diff between gpu and trt in Windows."
)
def
test
(
self
):
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
add_skip_trt_case
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录