Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8219f206
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8219f206
编写于
9月 13, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine gemm convolution kernel.
上级
5860150d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
12 addition
and
16 deletion
+12
-16
paddle/operators/gemm_conv_op.h
paddle/operators/gemm_conv_op.h
+12
-16
未找到文件。
paddle/operators/gemm_conv_op.h
浏览文件 @
8219f206
...
@@ -58,7 +58,7 @@ class GemmConvKernel : public framework::OpKernel {
...
@@ -58,7 +58,7 @@ class GemmConvKernel : public framework::OpKernel {
input_channels
*
filter_height
*
filter_width
,
input_channels
*
filter_height
*
filter_width
,
output_height
*
output_width
};
output_height
*
output_width
};
Tensor
col
;
Tensor
col
;
col
.
mutable_data
<
float
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
// to call the matrix multiplication interface.
...
@@ -67,8 +67,8 @@ class GemmConvKernel : public framework::OpKernel {
...
@@ -67,8 +67,8 @@ class GemmConvKernel : public framework::OpKernel {
framework
::
DDim
input_shape
=
{
input
->
dims
()[
1
],
input
->
dims
()[
2
],
framework
::
DDim
input_shape
=
{
input
->
dims
()[
1
],
input
->
dims
()[
2
],
input
->
dims
()[
3
]};
input
->
dims
()[
3
]};
framework
::
DDim
filter_matrix_shape
=
{
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
dims
()[
0
],
framework
::
product
(
filter
.
dims
()
)
/
filter
.
dims
()[
0
]};
filter
.
numel
(
)
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output_channels
,
framework
::
DDim
output_matrix_shape
=
{
output_channels
,
...
@@ -80,14 +80,12 @@ class GemmConvKernel : public framework::OpKernel {
...
@@ -80,14 +80,12 @@ class GemmConvKernel : public framework::OpKernel {
// convolution operator: im2col + gemm
// convolution operator: im2col + gemm
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// im2col
// im2col
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
);
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
in_slice
.
Resize
(
input_shape
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
device_context
);
// gemm
// gemm
Tensor
out_slice
=
output
->
Slice
<
T
>
(
i
,
i
+
1
);
Tensor
out_slice
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
out_slice
.
Resize
(
output_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
math
::
matmul
<
Place
,
T
>
(
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
),
device_context
);
&
out_slice
,
T
(
0.0
),
device_context
);
}
}
...
@@ -138,7 +136,7 @@ class GemmConvGradKernel : public framework::OpKernel {
...
@@ -138,7 +136,7 @@ class GemmConvGradKernel : public framework::OpKernel {
input_channels
*
filter_height
*
filter_width
,
input_channels
*
filter_height
*
filter_width
,
output_height
*
output_width
};
output_height
*
output_width
};
Tensor
col
;
Tensor
col
;
col
.
mutable_data
<
float
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
// to call the matrix multiplication interface.
...
@@ -151,8 +149,8 @@ class GemmConvGradKernel : public framework::OpKernel {
...
@@ -151,8 +149,8 @@ class GemmConvGradKernel : public framework::OpKernel {
output_grad
->
dims
()[
1
],
output_grad
->
dims
()[
1
],
output_grad
->
dims
()[
2
]
*
output_grad
->
dims
()[
3
]};
output_grad
->
dims
()[
2
]
*
output_grad
->
dims
()[
3
]};
framework
::
DDim
filter_matrix_shape
=
{
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
dims
()[
0
],
framework
::
product
(
filter
.
dims
()
)
/
filter
.
dims
()[
0
]};
filter
.
numel
(
)
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
filter_grad
.
Resize
(
filter_matrix_shape
);
filter_grad
.
Resize
(
filter_matrix_shape
);
...
@@ -168,20 +166,18 @@ class GemmConvGradKernel : public framework::OpKernel {
...
@@ -168,20 +166,18 @@ class GemmConvGradKernel : public framework::OpKernel {
// convolution backward weight operator: im2col + gemm
// convolution backward weight operator: im2col + gemm
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// gemm
// gemm
Tensor
out_slice
=
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
);
Tensor
out_slice
=
out_slice
.
Resize
(
output_matrix_shape
);
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
)
.
Resize
(
output_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
filter
,
true
,
out_slice
,
false
,
T
(
1.0
),
math
::
matmul
<
Place
,
T
>
(
filter
,
true
,
out_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
),
device_context
);
&
col_matrix
,
T
(
0.0
),
device_context
);
// col2im
// col2im
Tensor
in_grad_slice
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
);
Tensor
in_grad_slice
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
in_grad_slice
.
Resize
(
input_shape
);
col2im
(
in_grad_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
col2im
(
in_grad_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
paddings
[
1
],
device_context
);
// im2col
// im2col
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
);
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
in_slice
.
Resize
(
input_shape
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
device_context
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录