未验证 提交 813e54ef 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #14328 from PaddlePaddle/revert-14046-windows/debug

Revert "cherry picked windows patches."
......@@ -26,7 +26,6 @@ message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
if(WIN32)
set(CMAKE_STATIC_LIBRARY_PREFIX lib)
set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} "/MT") #create multithread dynamic library
endif(WIN32)
if(NOT CMAKE_CROSSCOMPILING)
......@@ -34,6 +33,7 @@ if(NOT CMAKE_CROSSCOMPILING)
endif(NOT CMAKE_CROSSCOMPILING)
find_package(Git REQUIRED)
find_package(Threads REQUIRED)
include(simd)
################################ Configurations #######################################
......@@ -178,10 +178,10 @@ include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/cares)
include(external/cub)
include(external/xxhash) # download xxhash
if (NOT WIN32)
# there is no official support of snappystream, warpctc, nccl, cupti in windows
include(external/xxhash) # download xxhash
include(external/snappy) # download snappy
include(external/snappystream) # download snappystream
include(external/warpctc) # download, build, install warpctc
......
......@@ -169,21 +169,18 @@ set(CUDA_PROPAGATE_HOST_FLAGS OFF)
# Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc.
# So, don't set these flags here.
if (NOT WIN32) # windows msvc2015 support c++11 natively.
# -std=c++11 -fPIC not recoginize by msvc
# -std=c++11 -fPIC not recoginize by msvc, -Xcompiler will be added by cmake.
list(APPEND CUDA_NVCC_FLAGS "-std=c++11")
# in cuda9, suppress cuda warning on eigen with "-w"
list(APPEND CUDA_NVCC_FLAGS "-w" "-Xcompiler -fPIC")
else(NOT WIN32)
list(APPEND CUDA_NVCC_FLAGS "-w" "-Xcompiler -fPIC" "-Xcompiler /w")
list(APPEND CUDA_NVCC_FLAGS "-Xcompiler -fPIC")
endif(NOT WIN32)
if(WITH_FAST_MATH)
# Make use of fast math library. https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
list(APPEND CUDA_NVCC_FLAGS "--use_fast_math")
endif(WITH_FAST_MATH)
endif()
# in cuda9, suppress cuda warning on eigen
list(APPEND CUDA_NVCC_FLAGS "-w")
# Set :expt-relaxed-constexpr to suppress Eigen warnings
list(APPEND CUDA_NVCC_FLAGS "--expt-relaxed-constexpr")
......
......@@ -48,6 +48,7 @@ find_library(CUDNN_LIBRARY NAMES ${CUDNN_LIB_NAME} # libcudnn_static.a
NO_DEFAULT_PATH
DOC "Path to cuDNN library.")
if(CUDNN_INCLUDE_DIR AND CUDNN_LIBRARY)
set(CUDNN_FOUND ON)
else()
......@@ -82,7 +83,7 @@ if(CUDNN_FOUND)
if(NOT CUDNN_MAJOR_VERSION)
set(CUDNN_VERSION "???")
else()
else()
math(EXPR CUDNN_VERSION
"${CUDNN_MAJOR_VERSION} * 1000 +
${CUDNN_MINOR_VERSION} * 100 + ${CUDNN_PATCHLEVEL_VERSION}")
......
......@@ -48,7 +48,7 @@ ExternalProject_Add(
DOWNLOAD_DIR ${BOOST_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${BOOST_URL} -c -q -O ${BOOST_TAR}.tar.gz
&& tar zxf ${BOOST_TAR}.tar.gz
DOWNLOAD_NO_PROGRESS 1
DOWNLOAD_NO_PROGRESS 1
PREFIX ${BOOST_SOURCES_DIR}
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
......
......@@ -35,9 +35,7 @@ ExternalProject_Add(
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DBUILD_STATIC_LIBS=ON
-DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_TESTING=OFF
......@@ -47,10 +45,6 @@ ExternalProject_Add(
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
)
ADD_LIBRARY(gflags STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags)
IF(WIN32)
IF(NOT EXISTS "${GFLAGS_INSTALL_DIR}/lib/libgflags.lib")
add_custom_command(TARGET extern_gflags POST_BUILD
......@@ -58,6 +52,9 @@ IF(WIN32)
)
ENDIF()
ENDIF(WIN32)
ADD_LIBRARY(gflags STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags)
LIST(APPEND external_project_dependencies gflags)
......
......@@ -34,6 +34,7 @@ ELSE()
SET(GLOG_REPOSITORY "https://github.com/google/glog.git")
SET(GLOG_TAG "v0.3.5")
ENDIF()
ExternalProject_Add(
extern_glog
${EXTERNAL_PROJECT_LOG_ARGS}
......@@ -45,7 +46,6 @@ ExternalProject_Add(
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib
......
......@@ -51,7 +51,6 @@ IF(WITH_TESTING)
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_GMOCK=ON
......@@ -71,5 +70,6 @@ IF(WITH_TESTING)
ADD_LIBRARY(gtest_main STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET gtest_main PROPERTY IMPORTED_LOCATION ${GTEST_MAIN_LIBRARIES})
ADD_DEPENDENCIES(gtest_main extern_gtest)
LIST(APPEND external_project_dependencies gtest gtest_main)
ENDIF(WITH_TESTING)
......@@ -124,7 +124,6 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char *dummy_cblas = \"${dummyfile}\";")
ADD_LIBRARY(cblas STATIC ${dummyfile})
IF("${CBLAS_PROVIDER}" STREQUAL "MKLML")
......
......@@ -144,14 +144,11 @@ set(GPU_COMMON_FLAGS
-Wno-error=unused-function # Warnings in Numpy Header.
-Wno-error=array-bounds # Warnings in Eigen::array
)
else(NOT WIN32)
set(COMMON_FLAGS
-fPIC
-fno-omit-frame-pointer
"/w") #disable all warnings.
set(GPU_COMMON_FLAGS
-fPIC
-fno-omit-frame-pointer
"/w") #disable all warnings
endif(NOT WIN32)
......@@ -167,8 +164,8 @@ endif(APPLE)
if(LINUX)
set(GPU_COMMON_FLAGS
-Wall
-Werror
-Wextra
-Werror
${GPU_COMMON_FLAGS})
endif(LINUX)
......
......@@ -238,7 +238,6 @@ function(cc_library TARGET_NAME)
# add libxxx.lib prefix in windows
set(${TARGET_NAME}_LIB_NAME "${CMAKE_STATIC_LIBRARY_PREFIX}${TARGET_NAME}${CMAKE_STATIC_LIBRARY_SUFFIX}" CACHE STRING "output library name for target ${TARGET_NAME}")
endif(WIN32)
if(cc_library_SRCS)
if(cc_library_SHARED OR cc_library_shared) # build *.so
add_library(${TARGET_NAME} SHARED ${cc_library_SRCS})
......@@ -308,11 +307,7 @@ function(cc_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS})
if(WIN32) # in windows deps. shlwapi library.
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog shlwapi)
else(WIN32)
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
endif(WIN32)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
......@@ -383,11 +378,7 @@ function(nv_test TARGET_NAME)
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cuda_add_executable(${TARGET_NAME} ${nv_test_SRCS})
if(WIN32)
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog shlwapi)
else(WIN32)
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
endif(WIN32)
add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(${TARGET_NAME} ${TARGET_NAME})
if (nv_test_SERIAL)
......
......@@ -31,31 +31,10 @@ function(copy TARGET)
foreach(index RANGE ${len})
list(GET copy_lib_SRCS ${index} src)
list(GET copy_lib_DSTS ${index} dst)
if (WIN32)
# windows cmd shell will not expand wildcard automatically.
# below expand the files,libs and copy them by rules.
file(GLOB header_files ${src} "*.h")
file(GLOB static_lib_files ${src} "*.lib")
file(GLOB dll_lib_files ${src} "*.dll")
set(src_files ${header_files} ${static_lib_files} ${dll_lib_files})
if (NOT "${src_files}" STREQUAL "")
list(REMOVE_DUPLICATES src_files)
endif()
add_custom_command(TARGET ${TARGET} PRE_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory "${dst}"
)
foreach(src_file ${src_files})
add_custom_command(TARGET ${TARGET} PRE_BUILD
COMMAND ${CMAKE_COMMAND} -E copy "${src_file}" "${dst}"
COMMENT "copying ${src_file} -> ${dst}")
endforeach()
else(WIN32) # not windows
add_custom_command(TARGET ${TARGET} PRE_BUILD
add_custom_command(TARGET ${TARGET} PRE_BUILD
COMMAND mkdir -p "${dst}"
COMMAND cp -r "${src}" "${dst}"
COMMENT "copying ${src} -> ${dst}")
endif(WIN32)
endforeach()
endfunction()
......@@ -87,14 +66,13 @@ copy(boost_lib
DSTS ${dst_dir}
DEPS boost
)
if(NOT WIN32)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/xxhash")
copy(xxhash_lib
SRCS ${XXHASH_INCLUDE_DIR} ${XXHASH_LIBRARIES}
DSTS ${dst_dir} ${dst_dir}/lib
DEPS xxhash
)
endif(NOT WIN32)
if(NOT PROTOBUF_FOUND)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/protobuf")
......
......@@ -44,5 +44,5 @@ while ("${PADDLE_VERSION}" STREQUAL "")
endif()
endwhile()
add_definitions(-DPADDLE_VERSION="${PADDLE_VERSION}")
add_definitions(-DPADDLE_VERSION=${PADDLE_VERSION})
message(STATUS "Paddle version is ${PADDLE_VERSION}")
../../v2/dev/contribute_to_paddle_cn.md
../../v2/dev/contribute_to_paddle_en.md
../../../CONTRIBUTING.md
../../../CONTRIBUTING.md
\ No newline at end of file
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
......@@ -48,7 +46,6 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG(5) << "destroy ExecutorPrepareContext";
}
#ifndef _WIN32
template <typename RefCntMap>
static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
GarbageCollector<Tensor>* gc,
......@@ -83,7 +80,6 @@ static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
gc->Add(erase_tensors);
}
}
#endif
Executor::Executor(const platform::Place& place) : place_(place) {}
......@@ -371,7 +367,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
}
#ifndef _WIN32
int64_t max_memory_size = GetEagerDeletionThreshold();
std::unique_ptr<GarbageCollector<Tensor>> gc;
// WhileOp would set keep_kids to false
......@@ -413,16 +408,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
} else {
platform::DeviceContextPool::Instance().Get(place_)->Wait();
}
#else // WIN32
for (auto& op : ctx->ops_) {
op->Run(*local_scope, place_);
if (FLAGS_benchmark) {
VLOG(2) << "Memory used after operator " + op->Type() + " running: "
<< memory::memory_usage(place_);
}
}
platform::DeviceContextPool::Instance().Get(place_)->Wait();
#endif // NOT WIN32
if (local_scope != scope) {
scope->DeleteScope(local_scope);
......
......@@ -17,14 +17,12 @@ limitations under the License. */
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#ifndef _WIN32
#include "paddle/fluid/framework/garbage_collector.h"
#endif
namespace paddle {
namespace framework {
......
......@@ -17,12 +17,7 @@ limitations under the License. */
namespace paddle {
namespace framework {
namespace ir {
// msvc15 don't support constexpr in correct way.
#if !defined(_WIN32)
constexpr char Node::kControlDepVarName[];
#else
const char Node::kControlDepVarName[] = "__control_var";
#endif
int Node::count_ = 0;
std::unique_ptr<Node> CreateNodeForTest(const std::string& name,
......
......@@ -55,11 +55,7 @@ class Node {
}
enum class Type { kOperation, kVariable };
#if !defined(_WIN32) // msvc not support constexpr correctly.
static constexpr char kControlDepVarName[] = "__control_var";
#else
static const char kControlDepVarName[];
#endif
Type NodeType() const { return type_; }
......
......@@ -21,7 +21,6 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/variant.h"
namespace paddle {
......@@ -196,7 +195,6 @@ struct PassRegistrar : public Registrar {
__test_global_namespace_##uniq_name##__>::value, \
msg)
#if !defined(_WIN32)
// Register a new pass that can be applied on the IR.
#define REGISTER_PASS(pass_type, pass_class) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
......@@ -219,32 +217,7 @@ struct PassRegistrar : public Registrar {
extern int TouchPassRegistrar_##pass_type(); \
static int use_pass_itself_##pass_type##_ __attribute__((unused)) = \
TouchPassRegistrar_##pass_type()
#else
// windows version of __attribute__((unused))
#define UNUSED(x) __pragma(warning(suppress : 4100)) x
#define REGISTER_PASS(pass_type, pass_class) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
__reg_pass__##pass_type, \
"REGISTER_PASS must be called in global namespace"); \
static ::paddle::framework::ir::PassRegistrar<pass_class> \
__pass_registrar_##pass_type##__(#pass_type); \
int TouchPassRegistrar_##pass_type() { \
__pass_registrar_##pass_type##__.Touch(); \
return 0; \
} \
static ::paddle::framework::ir::PassRegistrar<pass_class> UNUSED( \
&__pass_tmp_registrar_##pass_type##__) = \
__pass_registrar_##pass_type##__
#define USE_PASS(pass_type) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
__use_pass_itself_##pass_type, \
"USE_PASS must be called in global namespace"); \
extern int TouchPassRegistrar_##pass_type(); \
static int UNUSED(use_pass_itself_##pass_type##_) = \
TouchPassRegistrar_##pass_type()
#endif // !_WIN32
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -20,11 +20,6 @@ limitations under the License. */
#include <typeindex>
#include <vector>
#if defined(_WIN32)
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#endif
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/memory/memory.h"
......
......@@ -16,10 +16,6 @@ cc_library(paddle_fluid_api
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
get_property(fluid_third_partys GLOBAL PROPERTY FLUID_THRID_PARTYS)
if (WIN32)
list(APPEND fluid_third_partys gflags glog protobuf cblas)
endif(WIN32)
# paddle_fluid_origin exclude inference api interface
cc_library(paddle_fluid_origin DEPS ${fluid_modules} paddle_fluid_api)
......@@ -37,11 +33,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
endif()
# Create static library
if (WIN32)
cc_library(paddle_fluid DEPS ${fluid_modules} ${fluid_third_partys} paddle_fluid_api paddle_inference_api)
else(WIND32)
cc_library(paddle_fluid DEPS ${fluid_modules} ${STATIC_INFERENCE_APIS} zero_copy_tensor reset_tensor_array)
endif(WIN32)
if(NOT APPLE)
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
......
......@@ -26,7 +26,6 @@
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/variant.h"
namespace paddle {
......@@ -103,6 +102,7 @@ struct Argument {
std::unordered_map<std::string, std::function<void()>> attr_deleters_;
};
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#define ANALYSIS_ARGUMENT_CHECK_FIELD(field__) \
if (UNLIKELY(!(field__))) { \
LOG(ERROR) << "field " << #field__ << " should be set."; \
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <sys/stat.h>
#include <cstdio>
#include <fstream>
#include <string>
......@@ -25,7 +26,6 @@ limitations under the License. */
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/port.h"
namespace paddle {
namespace inference {
......@@ -124,6 +124,20 @@ T &GetFromScope(const framework::Scope &scope, const std::string &name) {
return *var->GetMutable<T>();
}
static void ExecShellCommand(const std::string &cmd, std::string *message) {
char buffer[128];
std::shared_ptr<FILE> pipe(popen(cmd.c_str(), "r"), pclose);
if (!pipe) {
LOG(ERROR) << "error running command: " << cmd;
return;
}
while (!feof(pipe.get())) {
if (fgets(buffer, 128, pipe.get()) != nullptr) {
*message += buffer;
}
}
}
static framework::proto::ProgramDesc LoadProgramDesc(
const std::string &model_path) {
std::ifstream fin(model_path, std::ios::in | std::ios::binary);
......@@ -145,6 +159,16 @@ static bool FileExists(const std::string &filepath) {
return exists;
}
static bool PathExists(const std::string &path) {
struct stat statbuf;
if (stat(path.c_str(), &statbuf) != -1) {
if (S_ISDIR(statbuf.st_mode)) {
return true;
}
}
return false;
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......
......@@ -24,7 +24,6 @@ if(WITH_GPU AND TENSORRT_FOUND)
endif()
cc_library(reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope)
cc_library(helper SRCS helper.cc DEPS reset_tensor_array lod_tensor scope)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS reset_tensor_array lod_tensor scope)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api)
......
......@@ -16,6 +16,7 @@
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle_inference_api.h"
namespace paddle {
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <fstream>
#include <map>
#include <set>
#include <sstream>
......@@ -25,7 +24,6 @@ limitations under the License. */
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/timer.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -33,6 +31,16 @@ DEFINE_bool(profile, false, "Turn on profiler for fluid");
DECLARE_int32(paddle_num_threads);
namespace paddle {
namespace {
using paddle::inference::Timer;
template <class T>
std::string num2str(T a) {
std::stringstream istr;
istr << a;
return istr.str();
}
} // namespace
void NativePaddlePredictor::PrepareFeedFetch() {
for (auto *op : inference_program_->Block(0).AllOps()) {
......@@ -55,6 +63,7 @@ void NativePaddlePredictor::PrepareFeedFetch() {
bool NativePaddlePredictor::Init(
std::shared_ptr<framework::Scope> parent_scope) {
VLOG(3) << "Predictor::init()";
#if !defined(_WIN32)
if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance";
......@@ -82,21 +91,21 @@ bool NativePaddlePredictor::Init(
paddle::framework::InitDevices(false);
scope_.reset(new paddle::framework::Scope());
}
executor_.reset(new paddle::framework::Executor(place_));
// Initialize the inference program
if (!config_.model_dir.empty()) {
// Parameters are saved in separate files sited in
// the specified `dirname`.
inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
config_.model_dir);
} else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
inference_program_ = paddle::inference::Load(
executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
} else {
LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
return false;
......@@ -126,7 +135,7 @@ NativePaddlePredictor::~NativePaddlePredictor() {
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data,
int batch_size) {
using Timer = paddle::inference::Timer;
VLOG(3) << "Predictor::predict";
Timer timer;
timer.tic();
// set feed variable
......@@ -138,9 +147,11 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
}
// Run the inference program
// if share variables, we need not create variables
VLOG(4) << "Run prepared context";
executor_->RunPreparedContext(ctx_.get(), scope,
false, /* don't create local scope each time*/
false /* don't create variable each time */);
VLOG(4) << "Finish prepared context";
// get fetch variable
if (!GetFetch(output_data, scope)) {
LOG(ERROR) << "fail to get fetches";
......@@ -155,6 +166,7 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
}
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
VLOG(3) << "Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
......@@ -172,6 +184,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework::Scope *scope) {
VLOG(3) << "Predictor::set_feed";
if (inputs.size() != feeds_.size()) {
LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
<< inputs.size();
......@@ -231,6 +244,7 @@ void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework::Scope *scope) {
VLOG(3) << "Predictor::get_fetch";
outputs->resize(fetchs_.size());
for (size_t i = 0; i < fetchs_.size(); ++i) {
int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
......@@ -255,22 +269,25 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
VLOG(3) << "create NativePaddlePredictor";
if (config.use_gpu) {
// 1. GPU memeroy
PADDLE_ENFORCE_GT(
config.fraction_of_gpu_memory, 0.f,
"fraction_of_gpu_memory in the config should be set to range (0.,1.]");
"fraction_of_gpu_memory in the config should be set to range (0., 1.]");
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) {
flags.push_back("dummpy");
std::string flag = "--fraction_of_gpu_memory_to_use=" +
std::to_string(config.fraction_of_gpu_memory);
num2str<float>(config.fraction_of_gpu_memory);
flags.push_back(flag);
VLOG(3) << "set flag: " << flag;
framework::InitGflags(flags);
}
}
std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
return nullptr;
......
......@@ -31,10 +31,10 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle_inference_api.h" // NOLINT
namespace paddle {
......
......@@ -6,13 +6,13 @@ option(WITH_STATIC_LIB "Compile demo with static/shared library, default use sta
option(USE_TENSORRT "Compile demo with TensorRT." OFF)
macro(safe_set_static_flag)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
if (WIN32)
......@@ -37,25 +37,26 @@ if(NOT DEFINED DEMO_NAME)
endif()
if(WITH_GPU) # default gpu path
if(WITH_GPU)
if(NOT WIN32)
set(CUDA_LIB "/usr/local/cuda/lib64/" CACHE STRING "CUDA Library")
else()
if(CUDA_LIB STREQUAL "")
set(CUDA_LIB "C:\\Program\ Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v8.0\\lib\\x64")
set(CUDA_LIB "C:\\Program\ Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v8.0\\lib\\x64")
endif()
endif(NOT WIN32)
endif()
include_directories("D:/Paddle/")
include_directories("${PADDLE_LIB}")
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
include_directories("${PADDLE_LIB}/third_party/install/xxhash/include")
if (NOT WIN32)
include_directories("${PADDLE_LIB}/third_party/install/snappy/include")
include_directories("${PADDLE_LIB}/third_party/install/snappystream/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
include_directories("${PADDLE_LIB}/third_party/install/snappy/include")
include_directories("${PADDLE_LIB}/third_party/install/snappystream/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
endif(NOT WIN32)
include_directories("${PADDLE_LIB}/third_party/boost")
......@@ -63,15 +64,15 @@ include_directories("${PADDLE_LIB}/third_party/eigen3")
if (NOT WIN32)
if (USE_TENSORRT AND WITH_GPU)
include_directories("${TENSORRT_INCLUDE_DIR}")
link_directories("${TENSORRT_LIB_DIR}")
include_directories("${TENSORRT_INCLUDE_DIR}")
link_directories("${TENSORRT_LIB_DIR}")
endif()
endif(NOT WIN32)
if (NOT WIN32)
link_directories("${PADDLE_LIB}/third_party/install/snappy/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappy/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
endif(NOT WIN32)
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
......@@ -85,7 +86,7 @@ add_executable(${DEMO_NAME} ${DEMO_NAME}.cc)
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
......@@ -98,25 +99,25 @@ endif()
# Note: libpaddle_inference_api.so/a must put before libpaddle_fluid.so/a
if(WITH_STATIC_LIB)
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
if (NOT WIN32)
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${DEPS}
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf snappystream snappy z xxhash
${EXTERNAL_LIB})
else()
set(DEPS ${DEPS}
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
${CMAKE_STATIC_LIBRARY_PREFIX}glog ${CMAKE_STATIC_LIBRARY_PREFIX}gflags ${CMAKE_STATIC_LIBRARY_PREFIX}protobuf
${EXTERNAL_LIB})
# NOTE(dzhwinter) shlwapi will be deprecated.
set(DEPS ${DEPS} libcmt shlwapi)
# NOTE(dzhwinter) shlwapi is deprecated.
set(DEPS ${DEPS} libcmt shlwapi)
endif(NOT WIN32)
if(WITH_GPU)
......@@ -128,8 +129,8 @@ if(WITH_GPU)
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX} )
endif()
endif()
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#define GOOGLE_GLOG_DLL_DECL
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <thread> // NOLINT
#include <utility>
#include "paddle/fluid/inference/paddle_inference_api.h"
namespace paddle {
NativeConfig GetConfig() {
NativeConfig config;
config.prog_file = "hs_lb_without_bn_cudnn/__model__";
config.param_file = "hs_lb_without_bn_cudnn/__params__";
config.fraction_of_gpu_memory = 0.0;
config.use_gpu = true;
config.device = 0;
return config;
}
using Time = decltype(std::chrono::high_resolution_clock::now());
Time TimeNow() { return std::chrono::high_resolution_clock::now(); }
double TimeDiff(Time t1, Time t2) {
typedef std::chrono::microseconds ms;
auto diff = t2 - t1;
ms counter = std::chrono::duration_cast<ms>(diff);
return counter.count() / 1000.0;
}
std::vector<PaddleTensor> PrepareData() {
int height = 449;
int width = 581;
std::vector<float> data;
for (int i = 0; i < 3 * height * width; ++i) {
data.push_back(0.0);
}
PaddleTensor tensor;
tensor.shape = std::vector<int>({batch_size, 3, height, width});
tensor.data.Resize(sizeof(float) * batch_size * 3 * height * width);
std::copy(data.begin(), data.end(), static_cast<float*>(tensor.data.data()));
tensor.dtype = PaddleDType::FLOAT32;
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
return std::move(paddle_tensor_feeds);
}
void TestNaive(int batch_size, int thread_num) {
NativeConfig config = GetConfig();
int num_jobs = thread_num; // parallel jobs.
constexpr int epoches = 10; // each job run epoches.
std::vector<std::thread> threads;
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
for (int tid = 0; tid < num_jobs; ++tid) {
auto& pred = CreatePaddlePredictor<NativeConfig>(config);
predictors.emplace_back(std::move(pred));
}
auto time1 = TimeNow();
for (int tid = 0; tid < num_jobs; ++tid) {
threads.emplace_back([&, tid]() {
auto& predictor = predictors[tid];
PaddleTensor tensor_out;
std::vector<PaddleTensor> outputs(1, tensor_out);
for (size_t i = 0; i < epoches; i++) {
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
VLOG(3) << "tid : " << tid << " run: " << i << "finished";
ASSERT_EQ(outputs.size(), 1UL);
}
});
}
for (int i = 0; i < num_jobs; ++i) {
threads[i].join();
}
auto time2 = TimeNow();
VLOG(3) << "Thread num " << thread_num << "total time cost"
<< (time2 - time1);
}
} // namespace paddle
int main(int argc, char** argv) {
paddle::TestNaive(1, 1); // single thread.
paddle::TestNaive(1, 5); // 5 threads.
return 0;
}
......@@ -14,22 +14,36 @@
#pragma once
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include <glog/logging.h>
#include <algorithm>
#include <sys/time.h>
#include <chrono> // NOLINT
#include <iterator>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/inference/api/timer.h"
#include "paddle_inference_api.h" //NOLINT
#include "paddle/fluid/string/printf.h"
#include "paddle_inference_api.h"
namespace paddle {
namespace inference {
// Timer for timer
class Timer {
public:
std::chrono::high_resolution_clock::time_point start;
std::chrono::high_resolution_clock::time_point startu;
void tic() { start = std::chrono::high_resolution_clock::now(); }
double toc() {
startu = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> time_span =
std::chrono::duration_cast<std::chrono::duration<double>>(startu -
start);
double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
return used_time_ms;
}
};
static void split(const std::string &str, char sep,
std::vector<std::string> *pieces) {
pieces->clear();
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono> // NOLINT
namespace paddle {
namespace inference {
// Timer for timer
class Timer {
public:
std::chrono::high_resolution_clock::time_point start;
std::chrono::high_resolution_clock::time_point startu;
void tic() { start = std::chrono::high_resolution_clock::now(); }
double toc() {
startu = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> time_span =
std::chrono::duration_cast<std::chrono::duration<double>>(startu -
start);
double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
return used_time_ms;
}
};
} // namespace inference
} // namespace paddle
......@@ -11,8 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
......
......@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/platform/assert.h"
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/memory/detail/system_allocator.h"
......
......@@ -86,7 +86,7 @@ function(op_library TARGET)
# remove windows unsupported op, because windows has no nccl, no warpctc such ops.
foreach(windows_unsupport_op "nccl_op" "gen_nccl_id_op" "warpctc_op" "hierarchical_sigmoid_op"
"crf_decoding_op" "select_op" "lstmp_op" "gru_op" "fusion_gru_op" "lstm_op" "fusion_lstm_op" "cumsum_op"
"fusion_seqconv_eltadd_relu_op" "hash_op")
"fusion_seqconv_eltadd_relu_op" "channel_send_op" "channel_create_op" "channel_close_op" "channel_recv_op")
if ("${TARGET}" STREQUAL "${windows_unsupport_op}")
return()
endif()
......@@ -284,10 +284,12 @@ op_library(array_to_lod_tensor_op DEPS lod_rank_table_op)
op_library(max_sequence_len_op DEPS lod_rank_table)
op_library(sequence_conv_op DEPS context_project)
op_library(sequence_pool_op DEPS sequence_pooling)
op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(hierarchical_sigmoid_op DEPS matrix_bit_code)
op_library(lstmp_op DEPS sequence2batch lstm_compute)
op_library(gru_op DEPS sequence2batch gru_compute)
if (NOT WIN32)
op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(hierarchical_sigmoid_op DEPS matrix_bit_code)
op_library(lstmp_op DEPS sequence2batch lstm_compute)
op_library(gru_op DEPS sequence2batch gru_compute)
endif(NOT WIN32)
op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
op_library(cos_sim_op DEPS cos_sim_functor)
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
......
......@@ -54,7 +54,6 @@ class CastOpKernel : public framework::OpKernel<InT> {
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
framework::VisitDataType(
static_cast<framework::proto::VarType::Type>(
context.Attr<int>("out_dtype")),
......
......@@ -31,12 +31,12 @@ namespace operators {
template <typename T>
__device__ bool GT_E(T a, T b) {
return (a > b) || fabsf(static_cast<float>(a - b)) < 1e-4;
return (a > b) || fabs(a - b) < 1e-4;
}
template <typename T>
__device__ bool LT_E(T a, T b) {
return (a < b) || fabsf(static_cast<float>(a - b)) < 1e-4;
return (a < b) || fabs(a - b) < 1e-4;
}
template <typename T>
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <glog/logging.h>
#include <algorithm>
#include <iterator>
#include <vector>
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <memory>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
......@@ -33,15 +32,9 @@ class LoadCombineOp : public framework::OperatorBase {
const platform::Place &place) const override {
auto filename = Attr<std::string>("file_path");
auto load_as_fp16 = Attr<bool>("load_as_fp16");
auto format = Attr<std::string>("format");
std::unique_ptr<std::ifstream> fin;
if (format == "windows") {
fin.reset(new std::ifstream(filename,
std::ios_base::in | std::ios_base::binary));
} else {
fin.reset(new std::ifstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fin),
std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin),
"Cannot open file %s for load_combine op", filename);
auto out_var_names = Outputs("Out");
......@@ -61,11 +54,11 @@ class LoadCombineOp : public framework::OperatorBase {
auto *tensor = out_var->GetMutable<framework::LoDTensor>();
// Error checking
PADDLE_ENFORCE(static_cast<bool>(*fin), "Cannot read more from file %s",
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot read more from file %s",
filename);
// Get data from fin to tensor
DeserializeFromStream(*fin, tensor, dev_ctx);
DeserializeFromStream(fin, tensor, dev_ctx);
auto in_dtype = framework::ToDataType(tensor->type());
auto out_dtype =
......@@ -110,18 +103,6 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"LoDTensors will be loaded from \"file_path\".")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
AddComment(R"DOC(
LoadCombine Operator.
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <memory>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
......@@ -35,15 +34,8 @@ class LoadOp : public framework::OperatorBase {
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
auto filename = Attr<std::string>("file_path");
auto format = Attr<std::string>("format");
std::unique_ptr<std::ifstream> fin;
if (format == "windows") {
fin.reset(new std::ifstream(filename,
std::ios_base::in | std::ios_base::binary));
} else {
fin.reset(new std::ifstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fin), "Cannot open file %s for load op",
std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s for load op",
filename);
auto out_var_name = Output("Out");
......@@ -52,9 +44,9 @@ class LoadOp : public framework::OperatorBase {
out_var_name);
if (out_var->IsType<framework::LoDTensor>()) {
LoadLodTensor(*fin, place, out_var);
LoadLodTensor(fin, place, out_var);
} else if (out_var->IsType<framework::SelectedRows>()) {
LoadSelectedRows(*fin, place, out_var);
LoadSelectedRows(fin, place, out_var);
} else {
PADDLE_ENFORCE(
false,
......@@ -118,18 +110,6 @@ class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker {
R"(Variable will be loaded from "file_path")")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
AddComment(
"Load operator will load a LoDTensor / SelectedRows variable from disk "
"file.");
......
......@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
......
......@@ -57,6 +57,9 @@ math_library(sequence_padding)
math_library(sequence_pooling DEPS math_function)
math_library(sequence_scale)
math_library(softmax DEPS math_function)
if (NOT WIN32)
math_library(matrix_bit_code)
endif (NOT WIN32)
math_library(unpooling)
math_library(vol2col)
......@@ -72,9 +75,7 @@ if(WITH_GPU)
endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
if (NOT WIN32)
math_library(matrix_bit_code)
endif (NOT WIN32)
set(JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc)
set(JIT_KERNEL_DEPS cpu_info cblas gflags enforce)
if(WITH_XBYAK)
......
......@@ -18,6 +18,10 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
......
......@@ -15,10 +15,13 @@ limitations under the License. */
#pragma once
#include <math.h>
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/hostdevice.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......
......@@ -25,6 +25,10 @@ limitations under the License. */
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......
......@@ -16,6 +16,9 @@ limitations under the License. */
#include <limits>
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
......@@ -260,7 +263,6 @@ class CRFDecodeKernelImpl : public CRFDecodeKernel<T> {
} \
}
#ifndef _WIN32 // commented out crf decoding
#ifdef __AVX__
INTRIAVX_FLOAT(kEQ8);
INTRIAVX_FLOAT(kGT8LT16);
......@@ -273,7 +275,6 @@ INTRIAVX2_FLOAT(jit::avx2, kGT8LT16);
INTRIAVX2_FLOAT(jit::avx2, kEQ16);
INTRIAVX2_FLOAT(jit::avx2, kGT16);
#endif
#endif // WIN32
#ifdef __AVX512F__
INTRIAVX2_FLOAT(jit::avx512f, kEQ8);
INTRIAVX2_FLOAT(jit::avx512f, kGT8LT16);
......
......@@ -20,6 +20,10 @@ limitations under the License. */
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......@@ -62,18 +66,14 @@ namespace detail {
#ifdef __AVX__
#if defined(_WIN32)
#define ALIGN32 __declspec(align(32))
#else
#define ALIGN32 __attribute__((aligned(32)))
#endif // _WIN32
#define _PS256_CONST(Name, Val) \
static const float ALIGN32 _ps256_##Name[8] = {Val, Val, Val, Val, \
static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
#define _PI256_CONST(Name, Val) \
static const int ALIGN32 _pi256_##Name[8] = {Val, Val, Val, Val, \
static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
_PI256_CONST(0x7f, 0x7f);
......@@ -98,7 +98,7 @@ typedef union imm_xmm_union {
#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
{ \
imm_xmm_union ALIGN32 u; \
imm_xmm_union u ALIGN32; \
u.imm = imm_; \
xmm0_ = u.xmm[0]; \
xmm1_ = u.xmm[1]; \
......@@ -106,7 +106,7 @@ typedef union imm_xmm_union {
#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
{ \
imm_xmm_union ALIGN32 u; \
imm_xmm_union u ALIGN32; \
u.xmm[0] = xmm0_; \
u.xmm[1] = xmm1_; \
imm_ = u.imm; \
......@@ -508,14 +508,12 @@ class VTanhKernelImpl : public VTanhKernel<T> {
vaddbias_->Compute(-1.f, y, y); \
}
#ifndef __WIN32
#ifdef __AVX__
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
#endif // AVX
#endif // WIN32
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
......
......@@ -18,6 +18,10 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
......
......@@ -16,7 +16,6 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
......
......@@ -16,12 +16,13 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace operators {
namespace math {
#define FLT_MAX __FLT_MAX__
template <typename T>
struct MaxPoolFunctor {
HOSTDEVICE void operator()(const T* input, const size_t start,
......
......@@ -13,7 +13,6 @@
limitations under the License. */
#include <algorithm>
#include <iostream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#include <stdint.h>
#include <fstream>
#include <memory>
#include <numeric>
#include <sstream>
#include "paddle/fluid/framework/data_type.h"
......@@ -42,7 +41,6 @@ class SaveCombineOp : public framework::OperatorBase {
auto filename = Attr<std::string>("file_path");
auto overwrite = Attr<bool>("overwrite");
auto save_as_fp16 = Attr<bool>("save_as_fp16");
auto format = Attr<std::string>("format");
bool is_present = FileExists(filename);
if (is_present && !overwrite) {
......@@ -51,14 +49,8 @@ class SaveCombineOp : public framework::OperatorBase {
}
MkDirRecursively(DirName(filename).c_str());
std::unique_ptr<std::ofstream> fout;
if (format == "windows") {
fout.reset(new std::ofstream(filename,
std::ios_base::out | std::ios_base::binary));
} else {
fout.reset(new std::ofstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fout), "Cannot open %s to write",
std::ofstream fout(filename);
PADDLE_ENFORCE(static_cast<bool>(fout), "Cannot open %s to write",
filename);
auto inp_var_names = Inputs("X");
......@@ -94,11 +86,12 @@ class SaveCombineOp : public framework::OperatorBase {
// copy LoD info to the new tensor
out.set_lod(tensor.lod());
framework::TransDataType(in_kernel_type, out_kernel_type, tensor, &out);
framework::SerializeToStream(*fout, out, dev_ctx);
framework::SerializeToStream(fout, out, dev_ctx);
} else {
framework::SerializeToStream(*fout, tensor, dev_ctx);
framework::SerializeToStream(fout, tensor, dev_ctx);
}
}
fout.close();
}
};
......@@ -131,18 +124,6 @@ to a file on disk.
"The \"file_path\" where the LoDTensor variables will be saved.")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
}
};
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#include <stdint.h>
#include <fstream>
#include <memory>
#include <numeric>
#include "paddle/fluid/framework/data_type.h"
......@@ -65,7 +64,6 @@ class SaveOp : public framework::OperatorBase {
framework::Variable *var) const {
auto filename = Attr<std::string>("file_path");
auto overwrite = Attr<bool>("overwrite");
auto format = Attr<std::string>("format");
if (FileExists(filename) && !overwrite) {
PADDLE_THROW("%s is existed, cannot save to it when overwrite=false",
......@@ -82,14 +80,8 @@ class SaveOp : public framework::OperatorBase {
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
std::unique_ptr<std::ofstream> fout;
if (format == "windows") {
fout.reset(new std::ofstream(filename,
std::ios_base::out | std::ios_base::binary));
} else {
fout.reset(new std::ofstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fout), "Cannot open %s to write",
std::ofstream fout(filename);
PADDLE_ENFORCE(static_cast<bool>(fout), "Cannot open %s to write",
filename);
auto save_as_fp16 = Attr<bool>("save_as_fp16");
......@@ -103,10 +95,11 @@ class SaveOp : public framework::OperatorBase {
framework::TransDataType(in_kernel_type, out_kernel_type, tensor, &out);
// copy LoD info to the new tensor
out.set_lod(tensor.lod());
framework::SerializeToStream(*fout, out, dev_ctx);
framework::SerializeToStream(fout, out, dev_ctx);
} else {
framework::SerializeToStream(*fout, tensor, dev_ctx);
framework::SerializeToStream(fout, tensor, dev_ctx);
}
fout.close();
}
void SaveSelectedRows(const framework::Scope &scope,
......@@ -117,7 +110,6 @@ class SaveOp : public framework::OperatorBase {
lt_var != nullptr,
"Can not find variable kLookupTablePath for SaveSelectedRows");
std::string filename = lt_var->data();
auto format = Attr<std::string>("format");
VLOG(4) << "SaveSelectedRows get File name: " << filename;
MkDirRecursively(DirName(filename).c_str());
......@@ -130,16 +122,11 @@ class SaveOp : public framework::OperatorBase {
// FIXME(yuyang18): We save variable to local file now, but we should change
// it to save an output stream.
std::unique_ptr<std::ofstream> fout;
if (format == "windows") {
fout.reset(new std::ofstream(filename,
std::ios_base::out | std::ios_base::binary));
} else {
fout.reset(new std::ofstream(filename));
}
PADDLE_ENFORCE(static_cast<bool>(*fout), "Cannot open %s to write",
std::ofstream fout(filename);
PADDLE_ENFORCE(static_cast<bool>(fout), "Cannot open %s to write",
filename);
framework::SerializeToStream(*fout, selectedRows, dev_ctx);
framework::SerializeToStream(fout, selectedRows, dev_ctx);
fout.close();
}
};
......@@ -167,18 +154,6 @@ This operator will serialize and write LoDTensor / SelectedRows variable to file
"The \"file_path\" where the variable will be saved.")
.AddCustomChecker(
[](const std::string &path) { return !path.empty(); });
AddAttr<std::string>("format",
R"DOC((windows|linux)" "saved model file format
windows and linux file newline symbol is
different. windows(newline is \n\r) or linux(newline is \r)
So if you set attribute format to windows, then we saved model file in binary.
It can be used both linux and windows. If you set format to linux,
it will save file in normal file, newline symbol is \r. Need to note
that these two format is not inter-compatible.)DOC")
.SetDefault("linux")
.AddCustomChecker([](const std::string &s) {
return s == "windows" || s == "linux";
});
}
};
......
......@@ -15,7 +15,6 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/port.h"
namespace paddle {
namespace operators {
......
......@@ -34,7 +34,7 @@ namespace operators {
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;
namespace { // NOLINT
namespace {
TRT_DT FluidDataType2TRT(FluidDT type) {
switch (type) {
......@@ -60,7 +60,7 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
return nvinfer1::DimsCHW(shape[1], 1, 1);
}
} // NOLINT // namespace
} // namespace
using inference::Singleton;
using inference::tensorrt::TRT_EngineManager;
......
......@@ -16,18 +16,6 @@ limitations under the License. */
#include <stddef.h>
#ifdef _WIN32
#if defined(__AVX2__)
#include <immintrin.h> //avx2
#elif defined(__AVX__)
#include <intrin.h> //avx
#endif // AVX
#else // WIN32
#ifdef __AVX__
#include <immintrin.h>
#endif
#endif // WIN32
namespace paddle {
namespace platform {
......
......@@ -59,7 +59,6 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
#define CUDNN_VERSION_MIN(major, minor, patch) \
(CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))
#if !defined(_WIN32)
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
......@@ -67,16 +66,6 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
} \
} while (false)
#else
// windows
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (status != CUDNN_STATUS_SUCCESS) { \
std::cerr << ::paddle::platform::cudnnGetErrorString(status); \
} \
} while (false)
#endif
enum class DataLayout { // Not use
kNHWC,
......
......@@ -55,6 +55,7 @@ DeviceContextPool::DeviceContextPool(
for (auto& p : places) {
set.insert(p);
}
for (auto& p : set) {
if (platform::is_cpu_place(p)) {
#ifdef PADDLE_WITH_MKLDNN
......@@ -204,9 +205,7 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
<< ", Runtime Version: " << runtime_version_ / 1000
<< "." << (runtime_version_ % 100) / 10;
#ifndef _WIN32
callback_manager_.reset(new StreamCallbackManager(stream_));
#endif // NOT WIN32
}
CUDADeviceContext::~CUDADeviceContext() {
......
......@@ -32,7 +32,7 @@ limitations under the License. */
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
#include "unsupported/Eigen/CXX11/Tensor"
......@@ -173,7 +173,6 @@ class CUDADeviceContext : public DeviceContext {
PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
}
#ifndef _WIN32
template <typename Callback>
void AddStreamCallback(Callback&& callback) const {
std::lock_guard<std::mutex> guard(callback_mtx_);
......@@ -184,16 +183,6 @@ class CUDADeviceContext : public DeviceContext {
std::lock_guard<std::mutex> guard(callback_mtx_);
callback_manager_->Wait();
}
#else
template <typename Callback>
void AddStreamCallback(Callback&& callback) const {
// ugly empty functor.
}
void WaitStreamCallback() const {
// ugly empty functor.
}
#endif
private:
CUDAPlace place_;
......@@ -212,12 +201,10 @@ class CUDADeviceContext : public DeviceContext {
mutable std::mutex mtx_;
#ifndef _WIN32
// This lock is only used by callback
// If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
mutable std::mutex callback_mtx_;
std::unique_ptr<StreamCallbackManager> callback_manager_;
#endif
};
template <>
......
......@@ -127,7 +127,7 @@ struct EOFException : public std::exception {
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#else
// there is no equivalent intrinsics in msvc.
#define UNLIKELY(condition) ((condition) == 0)
#define UNLIKELY(condition) (condition == 0)
#endif
#if !defined(_WIN32)
......
......@@ -167,9 +167,7 @@ void InitGLOG(const std::string &prog_name) {
// glog will not hold the ARGV[0] inside.
// Use strdup to alloc a new string.
google::InitGoogleLogging(strdup(prog_name.c_str()));
#if !defined(_WIN32)
google::InstallFailureSignalHandler();
#endif
}
} // namespace framework
......
......@@ -28,16 +28,3 @@ limitations under the License. */
#if defined(__FLT_MAX__)
#define FLT_MAX __FLT_MAX__
#endif // __FLT_MAX__
#ifdef _WIN32
#if defined(PADDLE_COMPILE)
// by default, msvc has predefined macro _LIB for static library
// only shared library need to export and import symbols
// static library export all symbols by default.
#define PADDLE_DLL __declspec(dllexport)
#else
#define PADDLE_DLL __declspec(dllimport)
#endif
#else
#define PADDLE_DLL
#endif
......@@ -15,13 +15,12 @@
#pragma once
#include <cstdio>
#include <memory>
#include <memory> // NOLINT
#include <stdexcept>
#include <memory>
#include <string>
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include "glog/logging.h"
#if !defined(_WIN32)
......@@ -62,6 +61,7 @@ static void *dlopen(const char *filename, int flag) {
}
return reinterpret_cast<void *>(hModule);
}
#endif // !_WIN32
static void ExecShellCommand(const std::string &cmd, std::string *message) {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册