提交 811c4ee4 编写于 作者: Y yangyaming

Add python wrapper for sequence_reshape.

上级 7ab67e32
...@@ -504,3 +504,8 @@ l2_normalize ...@@ -504,3 +504,8 @@ l2_normalize
------------ ------------
.. autofunction:: paddle.v2.fluid.layers.l2_normalize .. autofunction:: paddle.v2.fluid.layers.l2_normalize
:noindex: :noindex:
sequence_reshape
----------------
.. autofunction:: paddle.v2.fluid.layers.sequence_reshape
:noindex:
...@@ -28,7 +28,7 @@ __all__ = [ ...@@ -28,7 +28,7 @@ __all__ = [
'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min',
'sequence_first_step', 'sequence_last_step', 'dropout', 'split', 'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
'l2_normalize', 'matmul', 'warpctc' 'l2_normalize', 'matmul', 'warpctc', 'sequence_reshape'
] ]
...@@ -213,33 +213,33 @@ def dynamic_lstm(input, ...@@ -213,33 +213,33 @@ def dynamic_lstm(input,
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows: (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
.. math:: .. math::
i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
\\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t} o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)
c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
h_t & = o_t \odot act_h(c_t) h_t & = o_t \odot act_h(c_t)
where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
the matrix of weights from the input gate to the input), :math:`W_{ic}, \ the matrix of weights from the input gate to the input), :math:`W_{ic}, \
W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
our implementation, we use vectors to reprenset these diagonal weight our implementation, we use vectors to reprenset these diagonal weight
matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
gate bias vector), :math:`\sigma` is the non-line activations, such as gate bias vector), :math:`\sigma` is the non-line activations, such as
logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
gate, forget gate, output gate, and cell activation vectors, respectively, gate, forget gate, output gate, and cell activation vectors, respectively,
all of which have the same size as the cell output activation vector :math:`h`. all of which have the same size as the cell output activation vector :math:`h`.
The :math:`\odot` is the element-wise product of the vectors. :math:`act_g` The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
and :math:`act_h` are the cell input and cell output activation functions and :math:`act_h` are the cell input and cell output activation functions
and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
candidate hidden state, which is computed based on the current input and candidate hidden state, which is computed based on the current input and
the previous hidden state. the previous hidden state.
Set `use_peepholes` to `False` to disable peephole connection. The formula Set `use_peepholes` to `False` to disable peephole connection. The formula
...@@ -251,38 +251,38 @@ def dynamic_lstm(input, ...@@ -251,38 +251,38 @@ def dynamic_lstm(input,
Users can choose to use fully-connect layer before LSTM layer. Users can choose to use fully-connect layer before LSTM layer.
Args: Args:
input(Variable): The input of dynamic_lstm layer, which supports input(Variable): The input of dynamic_lstm layer, which supports
variable-time length input sequence. The underlying variable-time length input sequence. The underlying
tensor in this Variable is a matrix with shape tensor in this Variable is a matrix with shape
(T X 4D), where T is the total time steps in this (T X 4D), where T is the total time steps in this
mini-batch, D is the hidden size. mini-batch, D is the hidden size.
size(int): 4 * hidden size. size(int): 4 * hidden size.
param_attr(ParamAttr): The parameter attribute for the learnable param_attr(ParamAttr): The parameter attribute for the learnable
hidden-hidden weights. hidden-hidden weights.
- The shape is (D x 4D), where D is the hidden - The shape is (D x 4D), where D is the hidden
size. size.
- Weights = {:math:`W_{ch}, W_{ih}, \ - Weights = {:math:`W_{ch}, W_{ih}, \
W_{fh}, W_{oh}`} W_{fh}, W_{oh}`}
bias_attr(ParamAttr): The bias attribute for the learnable bias bias_attr(ParamAttr): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden weights, which contains two parts, input-hidden
bias weights and peephole connections weights if bias weights and peephole connections weights if
setting `use_peepholes` to `True`. setting `use_peepholes` to `True`.
1. `use_peepholes = False` 1. `use_peepholes = False`
- The shape is (1 x 4D). - The shape is (1 x 4D).
- Biases = {:math:`b_c, b_i, b_f, b_o`}. - Biases = {:math:`b_c, b_i, b_f, b_o`}.
2. `use_peepholes = True` 2. `use_peepholes = True`
- The shape is (1 x 7D). - The shape is (1 x 7D).
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}. W_{fc}, W_{oc}`}.
use_peepholes(bool): Whether to enable diagonal/peephole connections, use_peepholes(bool): Whether to enable diagonal/peephole connections,
default `True`. default `True`.
is_reverse(bool): Whether to compute reversed LSTM, default `False`. is_reverse(bool): Whether to compute reversed LSTM, default `False`.
gate_activation(str): The activation for input gate, forget gate and gate_activation(str): The activation for input gate, forget gate and
output gate. Choices = ["sigmoid", "tanh", "relu", output gate. Choices = ["sigmoid", "tanh", "relu",
"identity"], default "sigmoid". "identity"], default "sigmoid".
cell_activation(str): The activation for cell output. Choices = ["sigmoid", cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh". "tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state. candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"], Choices = ["sigmoid", "tanh", "relu", "identity"],
...@@ -1914,3 +1914,57 @@ def warpctc(input, label, blank=0, norm_by_times=False, **kwargs): ...@@ -1914,3 +1914,57 @@ def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
attrs={'blank': blank, attrs={'blank': blank,
'norm_by_times': norm_by_times}) 'norm_by_times': norm_by_times})
return loss_out return loss_out
def sequence_reshape(input, new_dim):
"""
**Sequence Reshape Layer**
This layer will rearrange the input sequences. The new dimension is set by
user. Length of each sequence is computed according to original length,
original dimension and new dimension. The following example will help to
illustrate the function of this layer:
.. code-block:: text
x is a LoDTensor:
x.lod = [[0, 2, 6]]
x.data = [[1, 2], [3, 4],
[5, 6], [7, 8], [9, 10], [11, 12]]
x.dims = [6, 2]
set new_dim = 4
then out is a LoDTensor:
out.lod = [[0, 1, 3]]
out.data = [[1, 2, 3, 4],
[5, 6, 7, 8], [9, 10, 11, 12]]
out.dims = [3, 4]
Currently, only 1-level LoDTensor is supported and please make sure
(original length * original dimension) can be divided by new dimension with
no remainder for each sequence.
Args:
input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
with shape being [N, M] where M for dimension.
new_dim (int): New dimension which the input LoDTensor is reshaped to.
Returns:
Variable: Reshaped LoDTensor according to new dimension.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[5, 20],
dtype='float32', lod_level=1)
x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
"""
helper = LayerHelper('sequence_reshape', **locals())
out = helper.create_tmp_variable(helper.input_dtype())
helper.append_op(
type='sequence_reshape',
inputs={'X': [input]},
outputs={'Out': [out]},
attrs={'new_dim': new_dim})
return out
...@@ -216,6 +216,14 @@ class TestBook(unittest.TestCase): ...@@ -216,6 +216,14 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(x) self.assertIsNotNone(x)
print(str(program)) print(str(program))
def test_sequence_reshape(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
out = layers.sequence_reshape(input=x, new_dim=16)
self.assertIsNotNone(out)
print(str(program))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册