未验证 提交 81056073 编写于 作者: R RuohengMa 提交者: GitHub

[XPU][PHI] bind index_sample_grad xpu kernel (#53753)

上级 3dce9f0a
......@@ -420,6 +420,7 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet({phi::DataType::FLOAT32,
phi::DataType::INT32,
phi::DataType::INT64})},
{"index_sample_grad", XPUKernelSet({phi::DataType::FLOAT32})},
{"index_sample",
XPUKernelSet({phi::DataType::INT8,
phi::DataType::INT16,
......
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/index_sample_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/utils/data_type.h"
namespace phi {
template <typename T, typename Context>
void IndexSampleGradKernel(const Context& ctx,
const DenseTensor& x,
const DenseTensor& index,
const DenseTensor& out_grad,
DenseTensor* in_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
const auto& index_type = index.dtype();
bool index_type_match =
index_type == phi::DataType::INT32 || index_type == phi::DataType::INT64;
PADDLE_ENFORCE_EQ(index_type_match,
true,
phi::errors::InvalidArgument(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
index_type,
phi::DataType::INT32,
phi::DataType::INT64));
XPUType* in_grad_data = ctx.template Alloc<XPUType>(in_grad);
const XPUType* out_grad_data = out_grad.data<XPUType>();
auto in_grad_shape = phi::vectorize<int64_t>(in_grad->dims());
auto out_grad_shape = phi::vectorize<int64_t>(out_grad.dims());
auto index_shape = phi::vectorize<int64_t>(index.dims());
int r = xpu::constant(
ctx.x_context(), in_grad_data, in_grad->numel(), static_cast<XPUType>(0));
if (index_type == phi::DataType::INT32) {
const int* index_data = index.data<int>();
r = xpu::scatter_element(ctx.x_context(),
in_grad_data,
out_grad_data,
index_data,
in_grad_data,
in_grad_shape,
out_grad_shape,
index_shape,
1,
1);
} else if (index_type == phi::DataType::INT64) {
const int64_t* index_data = index.data<int64_t>();
r = xpu::scatter_element(ctx.x_context(),
in_grad_data,
out_grad_data,
index_data,
in_grad_data,
in_grad_shape,
out_grad_shape,
index_shape,
1,
1);
}
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scatter_element");
}
} // namespace phi
PD_REGISTER_KERNEL(
index_sample_grad, XPU, ALL_LAYOUT, phi::IndexSampleGradKernel, float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册