Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
80f7ca12
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
80f7ca12
编写于
9月 25, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update faq
上级
17622b48
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
5 addition
and
5 deletion
+5
-5
doc/faq/index_cn.rst
doc/faq/index_cn.rst
+5
-5
未找到文件。
doc/faq/index_cn.rst
浏览文件 @
80f7ca12
...
...
@@ -410,7 +410,7 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
这里设置 :code:`flatten_result=False`,得到的输出结果是元素个数等于输出字段数的 :code:`list`,该 :code:`list` 的每个元素是由所有输出层相应字段结果组成的 :code:`list`,每个字段结果的类型是 :code:`numpy.array`。:code:`flatten_result` 的默认值为 :code:`True`,该情况下,PaddlePaddle会分别对每个字段将所有输出层的结果按行进行拼接,如果各输出层该字段 :code:`numpy.array` 结果的相应维数不匹配,程序将不能正常运行。
20. :code:`paddle.layer.memory` 的参数 :code:`name` 如何使用
--------------------------------------------
--------------------------------------------
-----------------
* :code:`paddle.layer.memory` 用于获取特定layer上一时间步的输出,该layer是通过参数 :code:`name` 指定,即,:code:`paddle.layer.memory` 会关联参数 :code:`name` 取值相同的layer,并将该layer上一时间步的输出作为自身当前时间步的输出。
...
...
@@ -440,8 +440,8 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
* :code:`paddle.layer.lstmemory`、:code:`paddle.layer.grumemory`、:code:`paddle.layer.recurrent` 不是通过一般的方式来实现对输出的激活,所以不能采用第一种方式在这几个layer里设置 :code:`drop_rate` 来使用dropout。若要对这几个layer使用dropout,可采用第二种方式,即使用 :code:`paddle.layer.dropout`。
22. 如何设置
learning_rate_schedule
---------------------------------
22. 如何设置
学习率退火(learning rate annealing)
---------------------------------
---------------
在相应的优化算法里设置learning_rate_schedule及相关参数,以使用Adam算法为例,代码如下:
...
...
@@ -483,7 +483,7 @@ PaddlePaddle目前支持8种learning_rate_schedule,这8种learning_rate_schedu
* "manual"
这是一种按已训练样本数分段取值的
learning_rate_schedule
。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下:
这是一种按已训练样本数分段取值的
学习率退火方法
。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下:
.. code-block:: python
...
...
@@ -496,7 +496,7 @@ PaddlePaddle目前支持8种learning_rate_schedule,这8种learning_rate_schedu
* "pass_manual"
这是一种按已训练pass数分段取值的
learning_rate_schedule
。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下:
这是一种按已训练pass数分段取值的
学习率退火方法
。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下:
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录