Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
80c9f661
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
80c9f661
编写于
3月 02, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
update
上级
465878a9
e95c2283
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
243 addition
and
4 deletion
+243
-4
demo/image_classification/api_v2_resnet.py
demo/image_classification/api_v2_resnet.py
+74
-0
demo/image_classification/api_v2_train.py
demo/image_classification/api_v2_train.py
+91
-0
demo/image_classification/api_v2_vgg.py
demo/image_classification/api_v2_vgg.py
+47
-0
demo/introduction/api_train_v2.py
demo/introduction/api_train_v2.py
+1
-2
paddle/api/GradientMachine.cpp
paddle/api/GradientMachine.cpp
+14
-0
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+3
-0
paddle/py_paddle/util.py
paddle/py_paddle/util.py
+6
-0
python/paddle/v2/dataset/__init__.py
python/paddle/v2/dataset/__init__.py
+5
-1
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+2
-1
未找到文件。
demo/image_classification/api_v2_resnet.py
0 → 100644
浏览文件 @
80c9f661
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.v2
as
paddle
__all__
=
[
'resnet_cifar10'
]
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
active_type
=
paddle
.
activation
.
Relu
(),
ch_in
=
None
):
tmp
=
paddle
.
layer
.
img_conv
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
ch_in
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
batch_norm
(
input
=
tmp
,
act
=
active_type
)
def
shortcut
(
ipt
,
n_in
,
n_out
,
stride
):
if
n_in
!=
n_out
:
return
conv_bn_layer
(
ipt
,
n_out
,
1
,
stride
,
0
,
paddle
.
activation
.
Linear
())
else
:
return
ipt
def
basicblock
(
ipt
,
ch_out
,
stride
):
ch_in
=
ch_out
*
2
tmp
=
conv_bn_layer
(
ipt
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
paddle
.
activation
.
Linear
())
short
=
shortcut
(
ipt
,
ch_in
,
ch_out
,
stride
)
return
paddle
.
layer
.
addto
(
input
=
[
tmp
,
short
],
act
=
paddle
.
activation
.
Relu
())
def
layer_warp
(
block_func
,
ipt
,
features
,
count
,
stride
):
tmp
=
block_func
(
ipt
,
features
,
stride
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
features
,
1
)
return
tmp
def
resnet_cifar10
(
ipt
,
depth
=
32
):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
nStages
=
{
16
,
64
,
128
}
conv1
=
conv_bn_layer
(
ipt
,
ch_in
=
3
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
64
,
n
,
2
)
pool
=
paddle
.
layer
.
img_pool
(
input
=
res3
,
pool_size
=
8
,
stride
=
1
,
pool_type
=
paddle
.
pooling
.
Avg
())
return
pool
demo/image_classification/api_v2_train.py
0 → 100644
浏览文件 @
80c9f661
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import
sys
import
paddle.v2
as
paddle
from
api_v2_vgg
import
vgg_bn_drop
from
api_v2_resnet
import
resnet_cifar10
def
main
():
datadim
=
3
*
32
*
32
classdim
=
10
# PaddlePaddle init
paddle
.
init
(
use_gpu
=
True
,
trainer_count
=
1
)
image
=
paddle
.
layer
.
data
(
name
=
"image"
,
type
=
paddle
.
data_type
.
dense_vector
(
datadim
))
# Add neural network config
# option 1. resnet
net
=
resnet_cifar10
(
image
,
depth
=
32
)
# option 2. vgg
# net = vgg_bn_drop(image)
out
=
paddle
.
layer
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
paddle
.
activation
.
Softmax
())
lbl
=
paddle
.
layer
.
data
(
name
=
"label"
,
type
=
paddle
.
data_type
.
integer_value
(
classdim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
out
,
label
=
lbl
)
# Create parameters
parameters
=
paddle
.
parameters
.
create
(
cost
)
# Create optimizer
momentum_optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0.9
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.0002
*
128
),
learning_rate
=
0.1
/
128.0
,
learning_rate_decay_a
=
0.1
,
learning_rate_decay_b
=
50000
*
100
,
learning_rate_schedule
=
'discexp'
,
batch_size
=
128
)
# End batch and end pass event handler
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
128
),
reader_dict
=
{
'image'
:
0
,
'label'
:
1
})
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
# Create trainer
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
momentum_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
50000
),
batch_size
=
128
),
num_passes
=
5
,
event_handler
=
event_handler
,
reader_dict
=
{
'image'
:
0
,
'label'
:
1
})
if
__name__
==
'__main__'
:
main
()
demo/image_classification/api_v2_vgg.py
0 → 100644
浏览文件 @
80c9f661
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.v2
as
paddle
__all__
=
[
'vgg_bn_drop'
]
def
vgg_bn_drop
(
input
):
def
conv_block
(
ipt
,
num_filter
,
groups
,
dropouts
,
num_channels
=
None
):
return
paddle
.
networks
.
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
paddle
.
activation
.
Relu
(),
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
paddle
.
pooling
.
Max
())
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
3
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
paddle
.
layer
.
dropout
(
input
=
conv5
,
dropout_rate
=
0.5
)
fc1
=
paddle
.
layer
.
fc
(
input
=
drop
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
bn
=
paddle
.
layer
.
batch_norm
(
input
=
fc1
,
act
=
paddle
.
activation
.
Relu
(),
layer_attr
=
paddle
.
attr
.
Extra
(
drop_rate
=
0.5
))
fc2
=
paddle
.
layer
.
fc
(
input
=
bn
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
return
fc2
demo/introduction/api_train_v2.py
浏览文件 @
80c9f661
...
...
@@ -40,8 +40,7 @@ def main():
reader_dict
=
{
'x'
:
0
,
'y'
:
1
})
if
event
.
pass_id
%
10
==
0
:
print
"Test %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
cost
,
result
.
metrics
)
print
"Test %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
# training
trainer
.
train
(
...
...
paddle/api/GradientMachine.cpp
浏览文件 @
80c9f661
...
...
@@ -142,6 +142,20 @@ Parameter* GradientMachine::getParameter(size_t i) throw(RangeError) {
}
}
size_t
GradientMachine
::
getNonStaticParameterSize
()
const
{
return
m
->
machine
->
getNonStaticParameters
().
size
();
}
Parameter
*
GradientMachine
::
getNonStaticParameter
(
size_t
i
)
throw
(
RangeError
)
{
auto
params
=
m
->
machine
->
getNonStaticParameters
();
if
(
i
<
params
.
size
())
{
return
Parameter
::
createFromSharedPtr
(
&
m
->
machine
->
getNonStaticParameters
()[
i
]);
}
else
{
throw
RangeError
();
}
}
void
GradientMachine
::
randParameters
()
{
m
->
machine
->
randParameters
();
}
Arguments
*
GradientMachine
::
getLayerOutput
(
const
std
::
string
&
layerName
)
const
...
...
paddle/api/PaddleAPI.h
浏览文件 @
80c9f661
...
...
@@ -771,6 +771,9 @@ public:
size_t
getParameterSize
()
const
;
Parameter
*
getParameter
(
size_t
i
)
throw
(
RangeError
);
size_t
getNonStaticParameterSize
()
const
;
Parameter
*
getNonStaticParameter
(
size_t
i
)
throw
(
RangeError
);
void
randParameters
();
Arguments
*
getLayerOutput
(
const
std
::
string
&
layerName
)
const
...
...
paddle/py_paddle/util.py
浏览文件 @
80c9f661
...
...
@@ -195,6 +195,12 @@ def __monkeypatch_gradient_machine__():
swig_paddle
.
GradientMachine
.
getParameters
=
getParameters
def
getNonStaticParameters
(
self
):
return
(
self
.
getNonStaticParameter
(
i
)
for
i
in
xrange
(
self
.
getNonStaticParameterSize
()))
swig_paddle
.
GradientMachine
.
getNonStaticParameters
=
getNonStaticParameters
def
getLayerOutputs
(
self
,
layerNames
):
"""
getLayerOutputs. get outputs of layers and return a numpy matrix dict.
...
...
python/paddle/v2/dataset/__init__.py
浏览文件 @
80c9f661
import
mnist
import
imikolov
import
imdb
import
cifar
import
movielens
import
uci_housing
__all__
=
[
'mnist'
,
'uci_housing'
]
__all__
=
[
'mnist'
,
'
imikolov'
,
'imdb'
,
'cifar'
,
'movielens'
,
'
uci_housing'
]
python/paddle/v2/trainer.py
浏览文件 @
80c9f661
...
...
@@ -120,7 +120,8 @@ class SGD(ITrainer):
feeder
(
data_batch
),
out_args
,
pass_type
)
self
.
__gradient_machine__
.
eval
(
pass_evaluator
)
self
.
__gradient_machine__
.
eval
(
batch_evaluator
)
for
each_param
in
self
.
__gradient_machine__
.
getParameters
():
for
each_param
in
self
.
__gradient_machine__
.
getNonStaticParameters
(
):
updater
.
update
(
each_param
)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec
=
out_args
.
getSlotValue
(
0
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录