Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
80484245
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
80484245
编写于
8月 09, 2021
作者:
J
Jacek Czaja
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
- disabled caching of layer norm
上级
1148ce67
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
39 addition
and
49 deletion
+39
-49
paddle/fluid/operators/mkldnn/layer_norm_mkldnn_op.cc
paddle/fluid/operators/mkldnn/layer_norm_mkldnn_op.cc
+39
-49
未找到文件。
paddle/fluid/operators/mkldnn/layer_norm_mkldnn_op.cc
浏览文件 @
80484245
...
...
@@ -19,45 +19,36 @@ namespace paddle {
namespace
operators
{
template
<
typename
T
>
class
LayerNormMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
layer_normalization_forward
>
{
class
LayerNormMKLDNNHandler
:
public
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
layer_normalization_forward
>
{
public:
LayerNormMKLDNNHandler
(
const
std
::
vector
<
int64_t
>&
dims
,
const
float
&
epsilon
,
const
dnnl
::
normalization_flags
&
flags
,
const
bool
&
is_test
,
const
MKLDNNMemoryFormat
fmt
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
std
::
string
&
uniq_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
layer_normalization_forward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
dims
,
uniq_name
))
{
if
(
!
this
->
isCached
())
{
auto
md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
);
if
(
!
is_test
)
{
// TODO(grygielski) Delete forcing stats_md after DNNL 1.2 is introduced
auto
stats_md
=
dnnl
::
memory
::
desc
(
{
begin
(
dims
),
end
(
dims
)
-
1
},
platform
::
MKLDNNGetDataType
<
float
>
(),
platform
::
MKLDNNFormatForSize
(
dims
.
size
()
-
1
,
MKLDNNMemoryFormat
::
nchw
));
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
md
,
stats_md
,
epsilon
,
flags
);
}
else
{
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_inference
,
md
,
epsilon
,
flags
);
}
const
mkldnn
::
engine
engine
,
platform
::
Place
cpu_place
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
layer_normalization_forward
>
(
mkldnn_engine
,
cpu_place
)
{
auto
md
=
dnnl
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
);
if
(
!
is_test
)
{
// TODO(grygielski) Delete forcing stats_md after DNNL 1.2 is introduced
auto
stats_md
=
dnnl
::
memory
::
desc
(
{
begin
(
dims
),
end
(
dims
)
-
1
},
platform
::
MKLDNNGetDataType
<
float
>
(),
platform
::
MKLDNNFormatForSize
(
dims
.
size
()
-
1
,
MKLDNNMemoryFormat
::
nchw
));
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_training
,
md
,
stats_md
,
epsilon
,
flags
);
}
else
{
this
->
AcquireForwardPrimitiveDescriptor
(
dnnl
::
prop_kind
::
forward_inference
,
md
,
epsilon
,
flags
);
}
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireScaleShiftMemory
()
{
return
this
->
AcquireMemoryFromPrimitive
(
"@scaleshift_mem_p"
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireScaleShiftMemory
(
std
::
vector
<
float
>&
scaleshift_data
)
{
// scaleshift_data comes from temporary buffer so we need to copy it into
// created memory primitivie
auto
scaleshift_mem
=
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
weights_desc
(),
"@scaleshift_mem_p"
);
auto
scaleshift_mem
=
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
weights_desc
()
);
auto
data_ptr
=
scaleshift_mem
->
get_data_handle
();
std
::
size_t
num_bytes
=
scaleshift_data
.
size
()
*
sizeof
(
float
);
std
::
memcpy
(
data_ptr
,
scaleshift_data
.
data
(),
num_bytes
);
...
...
@@ -68,7 +59,7 @@ class LayerNormMKLDNNHandler
T
*
mean_data
=
mean
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
fwd_pd_
->
mean_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
mean_desc
(),
mean_data
,
"@mean_mem_p"
);
mean_data
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireVarianceMemory
(
...
...
@@ -76,7 +67,7 @@ class LayerNormMKLDNNHandler
T
*
variance_data
=
variance
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
fwd_pd_
->
variance_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
variance_desc
(),
variance_data
,
"@variance_mem_p"
);
variance_data
);
}
};
...
...
@@ -95,6 +86,7 @@ class LayerNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
src_tz
=
paddle
::
framework
::
vectorize
(
x
->
dims
());
PADDLE_ENFORCE_EQ
(
begin_norm_axis
,
(
src_tz
.
size
()
-
1
),
...
...
@@ -112,8 +104,8 @@ class LayerNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
LayerNormMKLDNNHandler
<
T
>
handler
(
src_tz
,
epsilon
,
flags
,
is_test
,
x
->
format
(),
dev_ctx
,
ctx
.
GetPlace
()
,
ctx
.
OutputName
(
"Y"
));
x
->
format
(),
mkldnn_engine
,
ctx
.
GetPlace
(
));
auto
src_memory
=
handler
.
AcquireSrcMemory
(
x
);
auto
dst_memory
=
handler
.
AcquireDstMemory
(
y
);
...
...
@@ -139,24 +131,22 @@ class LayerNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
args
.
insert
({
DNNL_ARG_VARIANCE
,
*
variance_memory
});
}
auto
scaleshift_memory
=
handler
.
AcquireScaleShiftMemory
()
;
auto
scaleshift_memory
=
nullptr
;
if
(
with_scaleshift
)
{
if
(
scaleshift_memory
==
nullptr
||
!
is_test
)
{
auto
scale_tz
=
paddle
::
framework
::
vectorize
(
scale
->
dims
());
const
unsigned
int
C
=
scale_tz
[
0
];
// MKLDNN requires a single piece of memory for scale and shift/bias
// data
std
::
vector
<
float
>
scaleshift_data
;
scaleshift_data
.
reserve
(
2
*
C
);
scaleshift_data
.
insert
(
scaleshift_data
.
begin
(),
scale
->
data
<
float
>
(),
scale
->
data
<
float
>
()
+
C
);
scaleshift_data
.
insert
(
scaleshift_data
.
end
(),
bias
->
data
<
float
>
(),
bias
->
data
<
float
>
()
+
C
);
scaleshift_memory
=
handler
.
AcquireScaleShiftMemory
(
scaleshift_data
);
}
auto
scale_tz
=
paddle
::
framework
::
vectorize
(
scale
->
dims
());
const
unsigned
int
C
=
scale_tz
[
0
];
// MKLDNN requires a single piece of memory for scale and shift/bias
// data
std
::
vector
<
float
>
scaleshift_data
;
scaleshift_data
.
reserve
(
2
*
C
);
scaleshift_data
.
insert
(
scaleshift_data
.
begin
(),
scale
->
data
<
float
>
(),
scale
->
data
<
float
>
()
+
C
);
scaleshift_data
.
insert
(
scaleshift_data
.
end
(),
bias
->
data
<
float
>
(),
bias
->
data
<
float
>
()
+
C
);
scaleshift_memory
=
handler
.
AcquireScaleShiftMemory
(
scaleshift_data
);
args
.
insert
({
DNNL_ARG_SCALE_SHIFT
,
*
scaleshift_memory
});
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录