提交 802ea509 编写于 作者: 翟飞跃 提交者: Tao Luo

fix spelling errors (#17941)

* fix spelling errors; test=develop

* Update API.spec

update md5

* Update API.spec

* change the order of api;test=develop
上级 0569ff78
...@@ -59,7 +59,7 @@ python -c 'from recordio_converter import *; prepare_mnist("data", 1)' ...@@ -59,7 +59,7 @@ python -c 'from recordio_converter import *; prepare_mnist("data", 1)'
## Run Distributed Benchmark on Kubernetes Cluster ## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will
have to start all those processes mannually on each node, which is not recommended. have to start all those processes manually on each node, which is not recommended.
To build the Docker image, you need to choose a paddle "whl" package to run with, you may either To build the Docker image, you need to choose a paddle "whl" package to run with, you may either
download it from download it from
......
...@@ -26,7 +26,7 @@ chmod a+rw $PORT_FILE $PORT_LOCK_FILE 2>/dev/null ...@@ -26,7 +26,7 @@ chmod a+rw $PORT_FILE $PORT_LOCK_FILE 2>/dev/null
# #
# There are two parameter of this method # There are two parameter of this method
# param 1: the begin of port range # param 1: the begin of port range
# param 2: the lenght of port range. # param 2: the length of port range.
# so, the port range is [param1, param1+param2) # so, the port range is [param1, param1+param2)
acquire_ports(){ acquire_ports(){
( (
......
...@@ -74,8 +74,8 @@ paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=No ...@@ -74,8 +74,8 @@ paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=No
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '424e898365195e3ccbc2e7dc8b63605e')) paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '424e898365195e3ccbc2e7dc8b63605e'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '6f9f96d2a1517cd1affebc960c3526f7')) paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '6f9f96d2a1517cd1affebc960c3526f7'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', '8e35ca26adbe44eb631d71045c8d64d5')) paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', '246ff18abc877dd576653006991918e9'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'b4b608b986eb9617aa0525e1be21d32d')) paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', '4f63053354bcc6c743b4d2f4e7104e25'))
paddle.fluid.layers.dynamic_gru (ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None, False)), ('document', '83617c165827e030636c80486d5de6f3')) paddle.fluid.layers.dynamic_gru (ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None, False)), ('document', '83617c165827e030636c80486d5de6f3'))
paddle.fluid.layers.gru_unit (ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False)), ('document', '33974b9bfa69f2f1eb85e6f956dff04e')) paddle.fluid.layers.gru_unit (ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False)), ('document', '33974b9bfa69f2f1eb85e6f956dff04e'))
paddle.fluid.layers.linear_chain_crf (ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,)), ('document', '34f96be41684b0959897a9e735997e20')) paddle.fluid.layers.linear_chain_crf (ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,)), ('document', '34f96be41684b0959897a9e735997e20'))
...@@ -119,7 +119,7 @@ paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed ...@@ -119,7 +119,7 @@ paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '59b28903ce8fb6a7e3861ff355592eb4')) paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '59b28903ce8fb6a7e3861ff355592eb4'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2bc3a59efa9d52b628a6255422d9f0e8')) paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2bc3a59efa9d52b628a6255422d9f0e8'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', 'f2c252aa2f83f8e503ffaf79668eaa28')) paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', 'f2c252aa2f83f8e503ffaf79668eaa28'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '35c6a241bcc1a1fc89508860d82ad62b')) paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', 'd0484a1f85b40009a794d45a1a298c12'))
paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', 'aa27ca4405e70c6a733cb9806a76af30')) paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', 'aa27ca4405e70c6a733cb9806a76af30'))
paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2a1e9ea041ff4d6a9948bb8d03b743ea')) paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2a1e9ea041ff4d6a9948bb8d03b743ea'))
paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, False, False)), ('document', '4aa9df890b47eb67d5442f04aaf9eeec')) paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, False, False)), ('document', '4aa9df890b47eb67d5442f04aaf9eeec'))
...@@ -196,7 +196,7 @@ paddle.fluid.layers.elementwise_floordiv (ArgSpec(args=['x', 'y', 'axis', 'act', ...@@ -196,7 +196,7 @@ paddle.fluid.layers.elementwise_floordiv (ArgSpec(args=['x', 'y', 'axis', 'act',
paddle.fluid.layers.uniform_random_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)), ('document', 'c8c7518358cfbb3822a019e6b5fbea52')) paddle.fluid.layers.uniform_random_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)), ('document', 'c8c7518358cfbb3822a019e6b5fbea52'))
paddle.fluid.layers.gaussian_random (ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', '8c78ccb77e291e4a0f0673d34823ce4b')) paddle.fluid.layers.gaussian_random (ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', '8c78ccb77e291e4a0f0673d34823ce4b'))
paddle.fluid.layers.sampling_id (ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', '35428949368cad5121dd37f8522ef8b0')) paddle.fluid.layers.sampling_id (ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', '35428949368cad5121dd37f8522ef8b0'))
paddle.fluid.layers.gaussian_random_batch_size_like (ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32')), ('document', '9e520987168f8ddb7dd71ffd68aa352c')) paddle.fluid.layers.gaussian_random_batch_size_like (ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32')), ('document', '7536418f4cf0360a1a897c265f06e77e'))
paddle.fluid.layers.sum (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '4527fd90e222f67b5f7451fb0cf7c845')) paddle.fluid.layers.sum (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '4527fd90e222f67b5f7451fb0cf7c845'))
paddle.fluid.layers.slice (ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None), ('document', '3ca6a761570d86e303e473afba99bb49')) paddle.fluid.layers.slice (ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None), ('document', '3ca6a761570d86e303e473afba99bb49'))
paddle.fluid.layers.shape (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'bf61c8f79d795a8371bdb3b5468aa82b')) paddle.fluid.layers.shape (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'bf61c8f79d795a8371bdb3b5468aa82b'))
...@@ -341,17 +341,17 @@ paddle.fluid.layers.uniform_random (ArgSpec(args=['shape', 'dtype', 'min', 'max' ...@@ -341,17 +341,17 @@ paddle.fluid.layers.uniform_random (ArgSpec(args=['shape', 'dtype', 'min', 'max'
paddle.fluid.layers.hard_shrink (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c142f5884f3255e0d6075c286bbd531e')) paddle.fluid.layers.hard_shrink (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c142f5884f3255e0d6075c286bbd531e'))
paddle.fluid.layers.cumsum (ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '944d7c03057f5fc88bc78acd4d82f926')) paddle.fluid.layers.cumsum (ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '944d7c03057f5fc88bc78acd4d82f926'))
paddle.fluid.layers.thresholded_relu (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '90566ea449ea4c681435546e2f70610a')) paddle.fluid.layers.thresholded_relu (ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)), ('document', '90566ea449ea4c681435546e2f70610a'))
paddle.fluid.layers.prior_box (ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False)), ('document', 'a00d43a08ec664454e8e685bc54e9e78')) paddle.fluid.layers.prior_box (ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False)), ('document', 'b351a05b758f7e5370898cc7d7d40dca'))
paddle.fluid.layers.density_prior_box (ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', 'flatten_to_2d', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, False, None)), ('document', '7e62e12ce8b127f2c7ce8db79299c3c3')) paddle.fluid.layers.density_prior_box (ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', 'flatten_to_2d', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, False, None)), ('document', '05c43e8fd25efe34f75e35a2c045ded3'))
paddle.fluid.layers.multi_box_head (ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False)), ('document', 'fd58078fdfffd899b91f992ba224628f')) paddle.fluid.layers.multi_box_head (ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False)), ('document', 'fd58078fdfffd899b91f992ba224628f'))
paddle.fluid.layers.bipartite_match (ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '3ddb9b966f193900193a95a3df77c3c1')) paddle.fluid.layers.bipartite_match (ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '3ddb9b966f193900193a95a3df77c3c1'))
paddle.fluid.layers.target_assign (ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'e9685f32d21bec8c013626c0254502c5')) paddle.fluid.layers.target_assign (ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'e9685f32d21bec8c013626c0254502c5'))
paddle.fluid.layers.detection_output (ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0)), ('document', 'efae414c1137c7944d6174dd08c5347a')) paddle.fluid.layers.detection_output (ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0)), ('document', 'efae414c1137c7944d6174dd08c5347a'))
paddle.fluid.layers.ssd_loss (ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)), ('document', '6d5028fd09d01ab82d296adc0ea95aee')) paddle.fluid.layers.ssd_loss (ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)), ('document', '055bd5070ad72dccc0949b4ed036f39c'))
paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)), ('document', '1e164a56fe9376e18a56d22563d9f801')) paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)), ('document', '70d0109c864bced99b6b0aca4574af5e'))
paddle.fluid.layers.retinanet_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'gt_labels', 'is_crowd', 'im_info', 'num_classes', 'positive_overlap', 'negative_overlap'], varargs=None, keywords=None, defaults=(1, 0.5, 0.4)), ('document', 'fa1d1c9d5e0111684c0db705f86a2595')) paddle.fluid.layers.retinanet_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'gt_labels', 'is_crowd', 'im_info', 'num_classes', 'positive_overlap', 'negative_overlap'], varargs=None, keywords=None, defaults=(1, 0.5, 0.4)), ('document', 'fa1d1c9d5e0111684c0db705f86a2595'))
paddle.fluid.layers.sigmoid_focal_loss (ArgSpec(args=['x', 'label', 'fg_num', 'gamma', 'alpha'], varargs=None, keywords=None, defaults=(2, 0.25)), ('document', 'aeac6aae100173b3fc7f102cf3023a3d')) paddle.fluid.layers.sigmoid_focal_loss (ArgSpec(args=['x', 'label', 'fg_num', 'gamma', 'alpha'], varargs=None, keywords=None, defaults=(2, 0.25)), ('document', 'aeac6aae100173b3fc7f102cf3023a3d'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', '82b2aefeeb1b706bc4afec70928a259a')) paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', 'acc23232f4c8c03791598500b5bf7790'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', 'd1ddc75629fedee46f82e631e22c79dc')) paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', 'd1ddc75629fedee46f82e631e22c79dc'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random', 'is_cls_agnostic', 'is_cascade_rcnn'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True, False, False)), ('document', 'c0d00acf724691ff3480d4207036a722')) paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random', 'is_cls_agnostic', 'is_cascade_rcnn'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True, False, False)), ('document', 'c0d00acf724691ff3480d4207036a722'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', 'b7d707822b6af2a586bce608040235b1')) paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', 'b7d707822b6af2a586bce608040235b1'))
......
...@@ -4,7 +4,7 @@ PADDLE_ROOT=$1 ...@@ -4,7 +4,7 @@ PADDLE_ROOT=$1
TURN_ON_MKL=$2 # use MKL or Openblas TURN_ON_MKL=$2 # use MKL or Openblas
TEST_GPU_CPU=$3 # test both GPU/CPU mode or only CPU mode TEST_GPU_CPU=$3 # test both GPU/CPU mode or only CPU mode
DATA_DIR=$4 # dataset DATA_DIR=$4 # dataset
TENSORRT_INCLUDE_DIR=$5 # TensorRT header file dir, defalut to /usr/local/TensorRT/include TENSORRT_INCLUDE_DIR=$5 # TensorRT header file dir, default to /usr/local/TensorRT/include
TENSORRT_LIB_DIR=$6 # TensorRT lib file dir, default to /usr/local/TensorRT/lib TENSORRT_LIB_DIR=$6 # TensorRT lib file dir, default to /usr/local/TensorRT/lib
inference_install_dir=${PADDLE_ROOT}/build/fluid_inference_install_dir inference_install_dir=${PADDLE_ROOT}/build/fluid_inference_install_dir
......
...@@ -207,7 +207,7 @@ void AttentionLSTMOpMaker::Make() { ...@@ -207,7 +207,7 @@ void AttentionLSTMOpMaker::Make() {
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("cell_activation", AddAttr<std::string>("cell_activation",
"(string, default: tanh)" "(string, default: tanh)"
"The activation for cell output, `tanh` by defalut.") "The activation for cell output, `tanh` by default.")
.SetDefault("tanh") .SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("candidate_activation", AddAttr<std::string>("candidate_activation",
......
...@@ -31,7 +31,7 @@ limitations under the License. */ ...@@ -31,7 +31,7 @@ limitations under the License. */
// input data range. // input data range.
DEFINE_bool(cudnn_batchnorm_spatial_persistent, false, DEFINE_bool(cudnn_batchnorm_spatial_persistent, false,
"Whether enable CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode for cudnn " "Whether enable CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode for cudnn "
"batch_norm, defalut is False."); "batch_norm, default is False.");
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -33,7 +33,7 @@ DEFINE_uint64(conv_workspace_size_limit, ...@@ -33,7 +33,7 @@ DEFINE_uint64(conv_workspace_size_limit,
"cuDNN convolution workspace limit in MB unit."); "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false, DEFINE_bool(cudnn_exhaustive_search, false,
"Whether enable exhaustive search for cuDNN convolution or " "Whether enable exhaustive search for cuDNN convolution or "
"not, defalut is False."); "not, default is False.");
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -102,7 +102,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> { ...@@ -102,7 +102,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
conv_desc.descriptor<T>(paddings, strides, dilations); conv_desc.descriptor<T>(paddings, strides, dilations);
#if CUDNN_VERSION_MIN(7, 0, 1) #if CUDNN_VERSION_MIN(7, 0, 1)
// cudnn 7 can support groups, no need to do it mannually // cudnn 7 can support groups, no need to do it manually
// FIXME(typhoonzero): find a better way to disable groups // FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1. // rather than setting it to 1.
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount( CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
...@@ -300,7 +300,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> { ...@@ -300,7 +300,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search"); FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
if (exhaustive_search && FLAGS_cudnn_deterministic) { if (exhaustive_search && FLAGS_cudnn_deterministic) {
PADDLE_THROW( PADDLE_THROW(
"Cann't set exhaustive_search True and " "Can't set exhaustive_search True and "
"FLAGS_cudnn_deterministic True at same time."); "FLAGS_cudnn_deterministic True at same time.");
} }
...@@ -320,7 +320,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> { ...@@ -320,7 +320,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
conv_desc.descriptor<T>(paddings, strides, dilations); conv_desc.descriptor<T>(paddings, strides, dilations);
#if CUDNN_VERSION_MIN(7, 0, 1) #if CUDNN_VERSION_MIN(7, 0, 1)
// cudnn 7 can support groups, no need to do it mannually // cudnn 7 can support groups, no need to do it manually
// FIXME(typhoonzero): find a better way to disable groups // FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1. // rather than setting it to 1.
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount( CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
...@@ -665,7 +665,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> { ...@@ -665,7 +665,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
bool deterministic = FLAGS_cudnn_deterministic; bool deterministic = FLAGS_cudnn_deterministic;
if (exhaustive_search && deterministic) { if (exhaustive_search && deterministic) {
PADDLE_THROW( PADDLE_THROW(
"Cann't set exhaustive_search True and " "Can't set exhaustive_search True and "
"FLAGS_cudnn_deterministic True at same time."); "FLAGS_cudnn_deterministic True at same time.");
} }
......
...@@ -18,7 +18,7 @@ limitations under the License. */ ...@@ -18,7 +18,7 @@ limitations under the License. */
DEFINE_int64(cudnn_exhaustive_search_times, -1, DEFINE_int64(cudnn_exhaustive_search_times, -1,
"Exhaustive search times for cuDNN convolution, " "Exhaustive search times for cuDNN convolution, "
"defalut is -1, not exhaustive search"); "default is -1, not exhaustive search");
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -259,7 +259,7 @@ void Conv2DOpMaker::Make() { ...@@ -259,7 +259,7 @@ void Conv2DOpMaker::Make() {
AddAttr<bool>("exhaustive_search", AddAttr<bool>("exhaustive_search",
"(bool, default false) cuDNN has many algorithm to calculation " "(bool, default false) cuDNN has many algorithm to calculation "
"convolution, whether enable exhaustive search " "convolution, whether enable exhaustive search "
"for cuDNN convolution or not, defalut is False.") "for cuDNN convolution or not, default is False.")
.SetDefault(false); .SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
Convolution Operator. Convolution Operator.
...@@ -378,7 +378,7 @@ void Conv3DOpMaker::Make() { ...@@ -378,7 +378,7 @@ void Conv3DOpMaker::Make() {
AddAttr<bool>("exhaustive_search", AddAttr<bool>("exhaustive_search",
"(bool, default false) cuDNN has many algorithm to calculation " "(bool, default false) cuDNN has many algorithm to calculation "
"convolution, whether enable exhaustive search " "convolution, whether enable exhaustive search "
"for cuDNN convolution or not, defalut is False.") "for cuDNN convolution or not, default is False.")
.SetDefault(false); .SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
Convolution3D Operator. Convolution3D Operator.
......
...@@ -231,14 +231,14 @@ class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -231,14 +231,14 @@ class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
"entities."); "entities.");
AddAttr<std::string>( AddAttr<std::string>(
"match_type", "match_type",
"(string, defalut: per_prediction) " "(string, default: per_prediction) "
"The type of matching method, should be 'bipartite' or " "The type of matching method, should be 'bipartite' or "
"'per_prediction', 'bipartite' by defalut.") "'per_prediction', 'bipartite' by default.")
.SetDefault("bipartite") .SetDefault("bipartite")
.InEnum({"bipartite", "per_prediction"}); .InEnum({"bipartite", "per_prediction"});
AddAttr<float>( AddAttr<float>(
"dist_threshold", "dist_threshold",
"(float, defalut: 0.5) " "(float, default: 0.5) "
"If `match_type` is 'per_prediction', this threshold is to determine " "If `match_type` is 'per_prediction', this threshold is to determine "
"the extra matching bboxes based on the maximum distance.") "the extra matching bboxes based on the maximum distance.")
.SetDefault(0.5); .SetDefault(0.5);
......
...@@ -463,7 +463,7 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -463,7 +463,7 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
"Input BBoxes should be the second case with shape [M, C, 4]."); "Input BBoxes should be the second case with shape [M, C, 4].");
AddAttr<int>( AddAttr<int>(
"background_label", "background_label",
"(int, defalut: 0) " "(int, default: 0) "
"The index of background label, the background label will be ignored. " "The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered.") "If set to -1, then all categories will be considered.")
.SetDefault(0); .SetDefault(0);
...@@ -477,7 +477,7 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -477,7 +477,7 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
"confidences aftern the filtering detections based on " "confidences aftern the filtering detections based on "
"score_threshold"); "score_threshold");
AddAttr<float>("nms_threshold", AddAttr<float>("nms_threshold",
"(float, defalut: 0.3) " "(float, default: 0.3) "
"The threshold to be used in NMS.") "The threshold to be used in NMS.")
.SetDefault(0.3); .SetDefault(0.3);
AddAttr<float>("nms_eta", AddAttr<float>("nms_eta",
......
...@@ -150,7 +150,7 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -150,7 +150,7 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
"The class number."); "The class number.");
AddAttr<int>( AddAttr<int>(
"background_label", "background_label",
"(int, defalut: 0) " "(int, default: 0) "
"The index of background label, the background label will be ignored. " "The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered.") "If set to -1, then all categories will be considered.")
.SetDefault(0); .SetDefault(0);
......
...@@ -174,15 +174,15 @@ void FusedEmbeddingFCLSTMOpMaker::Make() { ...@@ -174,15 +174,15 @@ void FusedEmbeddingFCLSTMOpMaker::Make() {
AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate(); AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate(); AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
AddAttr<bool>("use_peepholes", AddAttr<bool>("use_peepholes",
"(bool, defalut: True) " "(bool, default: True) "
"whether to enable diagonal/peephole connections.") "whether to enable diagonal/peephole connections.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>("is_reverse", AddAttr<bool>("is_reverse",
"(bool, defalut: False) " "(bool, default: False) "
"whether to compute reversed LSTM.") "whether to compute reversed LSTM.")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("use_seq", AddAttr<bool>("use_seq",
"(bool, defalut: True) " "(bool, default: True) "
"whether to use seq mode to compute.") "whether to use seq mode to compute.")
.SetDefault(true); .SetDefault(true);
AddAttr<std::string>("gate_activation", AddAttr<std::string>("gate_activation",
...@@ -193,7 +193,7 @@ void FusedEmbeddingFCLSTMOpMaker::Make() { ...@@ -193,7 +193,7 @@ void FusedEmbeddingFCLSTMOpMaker::Make() {
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("cell_activation", AddAttr<std::string>("cell_activation",
"(string, default: tanh)" "(string, default: tanh)"
"The activation for cell output, `tanh` by defalut.") "The activation for cell output, `tanh` by default.")
.SetDefault("tanh") .SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("candidate_activation", AddAttr<std::string>("candidate_activation",
......
...@@ -67,7 +67,7 @@ class ConvInceptionFusionOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -67,7 +67,7 @@ class ConvInceptionFusionOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() override { void Make() override {
AddInput("Input", "(Tensor) NCHW layout."); AddInput("Input", "(Tensor) NCHW layout.");
AddInput("Filter", "(vector<Tensor>) 4 aggregated filters").AsDuplicable(); AddInput("Filter", "(vector<Tensor>) 4 aggregated filters").AsDuplicable();
AddInput("Bias", "(vector<Tensor>) it's lenght is equal to Filter") AddInput("Bias", "(vector<Tensor>) it's length is equal to Filter")
.AsDuplicable(); .AsDuplicable();
AddOutput("Output", AddOutput("Output",
"(Tensor) The output tensor of convolution operator. " "(Tensor) The output tensor of convolution operator. "
...@@ -82,7 +82,7 @@ class ConvInceptionFusionOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -82,7 +82,7 @@ class ConvInceptionFusionOpMaker : public framework::OpProtoAndCheckerMaker {
"exclusive", "exclusive",
"(bool, default True) When true, will exclude the zero-padding in the " "(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it " "averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True.") "is only used when pooling_type is avg. The default is True.")
.SetDefault(true); .SetDefault(true);
AddAttr<std::string>( AddAttr<std::string>(
"activation", "activation",
......
...@@ -147,11 +147,11 @@ void FusionGRUOpMaker::Make() { ...@@ -147,11 +147,11 @@ void FusionGRUOpMaker::Make() {
"The activation type used in update gate and reset gate.") "The activation type used in update gate and reset gate.")
.SetDefault("sigmoid"); .SetDefault("sigmoid");
AddAttr<bool>("is_reverse", AddAttr<bool>("is_reverse",
"(bool, defalut: False) " "(bool, default: False) "
"whether to compute reversed GRU.") "whether to compute reversed GRU.")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("use_seq", AddAttr<bool>("use_seq",
"(bool, defalut: True) " "(bool, default: True) "
"whether to use seq mode to compute GRU.") "whether to use seq mode to compute GRU.")
.SetDefault(true); .SetDefault(true);
AddComment(R"DOC( AddComment(R"DOC(
......
...@@ -179,15 +179,15 @@ void FusionLSTMOpMaker::Make() { ...@@ -179,15 +179,15 @@ void FusionLSTMOpMaker::Make() {
AddOutput("CheckedCell", "(Tensor) (2 x D) only for peephole.") AddOutput("CheckedCell", "(Tensor) (2 x D) only for peephole.")
.AsIntermediate(); .AsIntermediate();
AddAttr<bool>("use_peepholes", AddAttr<bool>("use_peepholes",
"(bool, defalut: True) " "(bool, default: True) "
"whether to enable diagonal/peephole connections.") "whether to enable diagonal/peephole connections.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>("is_reverse", AddAttr<bool>("is_reverse",
"(bool, defalut: False) " "(bool, default: False) "
"whether to compute reversed LSTM.") "whether to compute reversed LSTM.")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("use_seq", AddAttr<bool>("use_seq",
"(bool, defalut: True) " "(bool, default: True) "
"whether to use seq mode to compute.") "whether to use seq mode to compute.")
.SetDefault(true); .SetDefault(true);
AddAttr<std::string>("gate_activation", AddAttr<std::string>("gate_activation",
...@@ -198,7 +198,7 @@ void FusionLSTMOpMaker::Make() { ...@@ -198,7 +198,7 @@ void FusionLSTMOpMaker::Make() {
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("cell_activation", AddAttr<std::string>("cell_activation",
"(string, default: tanh)" "(string, default: tanh)"
"The activation for cell output, `tanh` by defalut.") "The activation for cell output, `tanh` by default.")
.SetDefault("tanh") .SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("candidate_activation", AddAttr<std::string>("candidate_activation",
......
...@@ -58,7 +58,7 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker { ...@@ -58,7 +58,7 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
AddComment(R"DOC( AddComment(R"DOC(
Used to initialize tensors with gaussian random generator. Used to initialize tensors with gaussian random generator.
The defalut mean of the distribution is 0. and defalut standard The default mean of the distribution is 0. and default standard
deviation (std) of the distribution is 1.. Uers can set mean and std deviation (std) of the distribution is 1.. Uers can set mean and std
by input arguments. by input arguments.
)DOC"); )DOC");
......
...@@ -137,7 +137,7 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -137,7 +137,7 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
"The activation type used in update gate and reset gate.") "The activation type used in update gate and reset gate.")
.SetDefault("sigmoid"); .SetDefault("sigmoid");
AddAttr<bool>("is_reverse", AddAttr<bool>("is_reverse",
"(bool, defalut: False) " "(bool, default: False) "
"whether to compute reversed GRU.") "whether to compute reversed GRU.")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("origin_mode", AddAttr<bool>("origin_mode",
......
...@@ -153,11 +153,11 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -153,11 +153,11 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
"in the backward.") "in the backward.")
.AsIntermediate(); .AsIntermediate();
AddAttr<bool>("use_peepholes", AddAttr<bool>("use_peepholes",
"(bool, defalut: True) " "(bool, default: True) "
"whether to enable diagonal/peephole connections.") "whether to enable diagonal/peephole connections.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>("is_reverse", AddAttr<bool>("is_reverse",
"(bool, defalut: False) " "(bool, default: False) "
"whether to compute reversed LSTM.") "whether to compute reversed LSTM.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::string>( AddAttr<std::string>(
...@@ -169,7 +169,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -169,7 +169,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("cell_activation", AddAttr<std::string>("cell_activation",
"(string, default: tanh)" "(string, default: tanh)"
"The activation for cell output, `tanh` by defalut.") "The activation for cell output, `tanh` by default.")
.SetDefault("tanh") .SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("candidate_activation", AddAttr<std::string>("candidate_activation",
...@@ -181,7 +181,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -181,7 +181,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC( AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator. Long-Short Term Memory (LSTM) Operator.
The defalut implementation is diagonal/peephole connection The default implementation is diagonal/peephole connection
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows: (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$ $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$
...@@ -199,7 +199,7 @@ $$ h_t = o_t \\odot act_h(c_t) $$ ...@@ -199,7 +199,7 @@ $$ h_t = o_t \\odot act_h(c_t) $$
- W terms denote weight matrices (e.g. $W_{xi}$ is the matrix - W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$ of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation, are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. we use vectors to represent these diagonal weight matrices.
- The b terms denote bias vectors ($b_i$ is the input gate bias vector). - The b terms denote bias vectors ($b_i$ is the input gate bias vector).
- $\sigma$ is the non-line activations, such as logistic sigmoid function. - $\sigma$ is the non-line activations, such as logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate, - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
......
...@@ -177,20 +177,20 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -177,20 +177,20 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
"backward.") "backward.")
.AsIntermediate(); .AsIntermediate();
AddAttr<bool>("use_peepholes", AddAttr<bool>("use_peepholes",
"(bool, defalut: True) " "(bool, default: True) "
"whether to enable diagonal/peephole connections.") "whether to enable diagonal/peephole connections.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>("is_reverse", AddAttr<bool>("is_reverse",
"(bool, defalut: False) " "(bool, default: False) "
"whether to compute reversed LSTMP.") "whether to compute reversed LSTMP.")
.SetDefault(false); .SetDefault(false);
AddAttr<float>("cell_clip", AddAttr<float>("cell_clip",
"(float, defalut: 0.0) " "(float, default: 0.0) "
"Clip for Tensor for cell state tensor when clip value is " "Clip for Tensor for cell state tensor when clip value is "
"greater than 0.0") "greater than 0.0")
.SetDefault(0.0); .SetDefault(0.0);
AddAttr<float>("proj_clip", AddAttr<float>("proj_clip",
"(float, defalut: 0.0) " "(float, default: 0.0) "
"Clip for Tensor for projection tensor when clip value is " "Clip for Tensor for projection tensor when clip value is "
"greater than 0.0") "greater than 0.0")
.SetDefault(0.0); .SetDefault(0.0);
...@@ -203,7 +203,7 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -203,7 +203,7 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("cell_activation", AddAttr<std::string>("cell_activation",
"(string, default: tanh)" "(string, default: tanh)"
"The activation for cell output, `tanh` by defalut.") "The activation for cell output, `tanh` by default.")
.SetDefault("tanh") .SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("candidate_activation", AddAttr<std::string>("candidate_activation",
...@@ -215,7 +215,7 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -215,7 +215,7 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::string>("proj_activation", AddAttr<std::string>("proj_activation",
"(string, default: tanh)" "(string, default: tanh)"
"The activation for projection output, " "The activation for projection output, "
"`tanh` by defalut.") "`tanh` by default.")
.SetDefault("tanh") .SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"}); .InEnum({"sigmoid", "tanh", "relu", "identity"});
AddComment(R"DOC( AddComment(R"DOC(
...@@ -248,7 +248,7 @@ $$ ...@@ -248,7 +248,7 @@ $$
where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$ of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation, are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms we use vectors to represent these diagonal weight matrices. The b terms
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$ denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
is the activation, such as logistic sigmoid function, and is the activation, such as logistic sigmoid function, and
$i, f, o$ and $c$ are the input gate, forget gate, output gate, $i, f, o$ and $c$ are the input gate, forget gate, output gate,
......
...@@ -190,7 +190,7 @@ void Pool2dOpMaker::Make() { ...@@ -190,7 +190,7 @@ void Pool2dOpMaker::Make() {
"exclusive", "exclusive",
"(bool, default True) When true, will exclude the zero-padding in the " "(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it " "averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True.") "is only used when pooling_type is avg. The default is True.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>( AddAttr<bool>(
"adaptive", "adaptive",
...@@ -360,7 +360,7 @@ void Pool3dOpMaker::Make() { ...@@ -360,7 +360,7 @@ void Pool3dOpMaker::Make() {
"exclusive", "exclusive",
"(bool, default True) When true, will exclude the zero-padding in the " "(bool, default True) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it " "averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True.") "is only used when pooling_type is avg. The default is True.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>( AddAttr<bool>(
"adaptive", "adaptive",
......
...@@ -46,7 +46,7 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -46,7 +46,7 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
"strides (height, width) of unpooling operator.") "strides (height, width) of unpooling operator.")
.SetDefault({1, 1}); .SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings", AddAttr<std::vector<int>>("paddings",
"(vector defalut:{0,0}), " "(vector default:{0,0}), "
"paddings (height, width) of unpooling operator.") "paddings (height, width) of unpooling operator.")
.SetDefault({0, 0}); .SetDefault({0, 0});
AddAttr<std::string>( AddAttr<std::string>(
......
...@@ -53,11 +53,11 @@ class QuantizationStrategy(Strategy): ...@@ -53,11 +53,11 @@ class QuantizationStrategy(Strategy):
start_epoch(int): The 'on_epoch_begin' function will be called in start_epoch. default: 0 start_epoch(int): The 'on_epoch_begin' function will be called in start_epoch. default: 0
end_epoch(int): The 'on_epoch_end' function will be called in end_epoch. default: 0 end_epoch(int): The 'on_epoch_end' function will be called in end_epoch. default: 0
float_model_save_path(str): The path to save model with float weights. float_model_save_path(str): The path to save model with float weights.
None means it doesn't save float model. defalut: None. None means it doesn't save float model. default: None.
mobile_model_save_path(str): The path to save model for paddle-mobile execution. mobile_model_save_path(str): The path to save model for paddle-mobile execution.
None means it doesn't save mobile model. defalut: None. None means it doesn't save mobile model. default: None.
int8_model_save_path(str): The path to save model with int8_t weight. int8_model_save_path(str): The path to save model with int8_t weight.
None means it doesn't save int8 model. defalut: None. None means it doesn't save int8 model. default: None.
activation_bits(int): quantization bit number for activation. default: 8. activation_bits(int): quantization bit number for activation. default: 8.
weight_bits(int): quantization bit number for weights. The bias is not quantized. weight_bits(int): quantization bit number for weights. The bias is not quantized.
default: 8. default: 8.
...@@ -90,7 +90,7 @@ class QuantizationStrategy(Strategy): ...@@ -90,7 +90,7 @@ class QuantizationStrategy(Strategy):
def restore_from_checkpoint(self, context): def restore_from_checkpoint(self, context):
""" """
Restore graph when the compressoin task is inited from checkpoint. Restore graph when the compression task is inited from checkpoint.
""" """
# It is inited from checkpoint and has missed start epoch. # It is inited from checkpoint and has missed start epoch.
if context.epoch_id != 0 and context.epoch_id > self.start_epoch: if context.epoch_id != 0 and context.epoch_id > self.start_epoch:
...@@ -100,7 +100,7 @@ class QuantizationStrategy(Strategy): ...@@ -100,7 +100,7 @@ class QuantizationStrategy(Strategy):
def _modify_graph_for_quantization(self, context): def _modify_graph_for_quantization(self, context):
""" """
Insert fake_quantize_op and fake_dequantize_op before trainging and testing. Insert fake_quantize_op and fake_dequantize_op before training and testing.
""" """
train_ir_graph = IrGraph( train_ir_graph = IrGraph(
core.Graph(context.optimize_graph.program.clone().desc), core.Graph(context.optimize_graph.program.clone().desc),
...@@ -151,7 +151,7 @@ class QuantizationStrategy(Strategy): ...@@ -151,7 +151,7 @@ class QuantizationStrategy(Strategy):
def on_epoch_begin(self, context): def on_epoch_begin(self, context):
""" """
Insert fake_quantize_op and fake_dequantize_op before trainging and testing. Insert fake_quantize_op and fake_dequantize_op before training and testing.
""" """
super(QuantizationStrategy, self).on_epoch_begin(context) super(QuantizationStrategy, self).on_epoch_begin(context)
if self.start_epoch == context.epoch_id: if self.start_epoch == context.epoch_id:
......
#start_epoch(int): The epoch to insert quantization operators. default: 0 #start_epoch(int): The epoch to insert quantization operators. default: 0
# #
#end_epoch(int): The epoch to save inferecne model. default: 0 #end_epoch(int): The epoch to save inference model. default: 0
# #
#float_model_save_path(str): The path to save model with float weights. #float_model_save_path(str): The path to save model with float weights.
# None means it doesn't save float model. defalut: None. # None means it doesn't save float model. default: None.
# #
#mobile_model_save_path(str): The path to save model for paddle-mobile execution. #mobile_model_save_path(str): The path to save model for paddle-mobile execution.
# None means it doesn't save mobile model. defalut: None. # None means it doesn't save mobile model. default: None.
# #
#int8_model_save_path(str): The path to save model with int8_t weight. #int8_model_save_path(str): The path to save model with int8_t weight.
# None means it doesn't save int8 model. defalut: None. # None means it doesn't save int8 model. default: None.
# #
#activation_bits(int): quantization bit number for activation. default: 8. #activation_bits(int): quantization bit number for activation. default: 8.
# #
......
...@@ -324,11 +324,11 @@ class DetectionMAP(Evaluator): ...@@ -324,11 +324,11 @@ class DetectionMAP(Evaluator):
class_num (int): The class number. class_num (int): The class number.
background_label (int): The index of background label, the background background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all categories will be label will be ignored. If set to -1, then all categories will be
considered, 0 by defalut. considered, 0 by default.
overlap_threshold (float): The threshold for deciding true/false overlap_threshold (float): The threshold for deciding true/false
positive, 0.5 by defalut. positive, 0.5 by default.
evaluate_difficult (bool): Whether to consider difficult ground truth evaluate_difficult (bool): Whether to consider difficult ground truth
for evaluation, True by defalut. This argument does not work when for evaluation, True by default. This argument does not work when
gt_difficult is None. gt_difficult is None.
ap_version (string): The average precision calculation ways, it must be ap_version (string): The average precision calculation ways, it must be
'integral' or '11point'. Please check 'integral' or '11point'. Please check
......
...@@ -265,7 +265,7 @@ def rpn_target_assign(bbox_pred, ...@@ -265,7 +265,7 @@ def rpn_target_assign(bbox_pred,
coordinate of the anchor box. coordinate of the anchor box.
anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded
variances of anchors. variances of anchors.
gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
bboxes of mini-batch input. bboxes of mini-batch input.
is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd. is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
...@@ -1258,8 +1258,8 @@ def ssd_loss(location, ...@@ -1258,8 +1258,8 @@ def ssd_loss(location,
""" """
**Multi-box loss layer for object detection algorithm of SSD** **Multi-box loss layer for object detection algorithm of SSD**
This layer is to compute dection loss for SSD given the location offset This layer is to compute detection loss for SSD given the location offset
predictions, confidence predictions, prior boxes and ground-truth boudding predictions, confidence predictions, prior boxes and ground-truth bounding
boxes and labels, and the type of hard example mining. The returned loss boxes and labels, and the type of hard example mining. The returned loss
is a weighted sum of the localization loss (or regression loss) and is a weighted sum of the localization loss (or regression loss) and
confidence loss (or classification loss) by performing the following steps: confidence loss (or classification loss) by performing the following steps:
...@@ -1303,7 +1303,7 @@ def ssd_loss(location, ...@@ -1303,7 +1303,7 @@ def ssd_loss(location,
confidence (Variable): The confidence predictions are a 3D Tensor confidence (Variable): The confidence predictions are a 3D Tensor
with shape [N, Np, C], N and Np are the same as they are in with shape [N, Np, C], N and Np are the same as they are in
`location`, C is the class number. `location`, C is the class number.
gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
bboxes of mini-batch input. bboxes of mini-batch input.
gt_label (Variable): The ground-truth labels are a 2D LoDTensor gt_label (Variable): The ground-truth labels are a 2D LoDTensor
...@@ -1316,14 +1316,14 @@ def ssd_loss(location, ...@@ -1316,14 +1316,14 @@ def ssd_loss(location,
`overlap_threshold` to determine the extra matching bboxes when `overlap_threshold` to determine the extra matching bboxes when
finding matched boxes. 0.5 by default. finding matched boxes. 0.5 by default.
neg_pos_ratio (float): The ratio of the negative boxes to the positive neg_pos_ratio (float): The ratio of the negative boxes to the positive
boxes, used only when mining_type is 'max_negative', 3.0 by defalut. boxes, used only when mining_type is 'max_negative', 3.0 by default.
neg_overlap (float): The negative overlap upper bound for the unmatched neg_overlap (float): The negative overlap upper bound for the unmatched
predictions. Use only when mining_type is 'max_negative', predictions. Use only when mining_type is 'max_negative',
0.5 by default. 0.5 by default.
loc_loss_weight (float): Weight for localization loss, 1.0 by default. loc_loss_weight (float): Weight for localization loss, 1.0 by default.
conf_loss_weight (float): Weight for confidence loss, 1.0 by default. conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
match_type (str): The type of matching method during training, should match_type (str): The type of matching method during training, should
be 'bipartite' or 'per_prediction', 'per_prediction' by defalut. be 'bipartite' or 'per_prediction', 'per_prediction' by default.
mining_type (str): The hard example mining type, should be 'hard_example' mining_type (str): The hard example mining type, should be 'hard_example'
or 'max_negative', now only support `max_negative`. or 'max_negative', now only support `max_negative`.
normalize (bool): Whether to normalize the SSD loss by the total number normalize (bool): Whether to normalize the SSD loss by the total number
...@@ -1507,7 +1507,7 @@ def prior_box(input, ...@@ -1507,7 +1507,7 @@ def prior_box(input,
Default:[0.1, 0.1, 0.2, 0.2]. Default:[0.1, 0.1, 0.2, 0.2].
flip(bool): Whether to flip aspect ratios. Default:False. flip(bool): Whether to flip aspect ratios. Default:False.
clip(bool): Whether to clip out-of-boundary boxes. Default: False. clip(bool): Whether to clip out-of-boundary boxes. Default: False.
step(list|turple): Prior boxes step across width and height, If step(list|tuple): Prior boxes step across width and height, If
step[0] == 0.0/step[1] == 0.0, the prior boxes step across step[0] == 0.0/step[1] == 0.0, the prior boxes step across
height/weight of the input will be automatically calculated. height/weight of the input will be automatically calculated.
Default: [0., 0.] Default: [0., 0.]
...@@ -1636,7 +1636,7 @@ def density_prior_box(input, ...@@ -1636,7 +1636,7 @@ def density_prior_box(input,
variance(list|tuple): the variances to be encoded in density prior boxes. variance(list|tuple): the variances to be encoded in density prior boxes.
Default:[0.1, 0.1, 0.2, 0.2]. Default:[0.1, 0.1, 0.2, 0.2].
clip(bool): Whether to clip out-of-boundary boxes. Default: False. clip(bool): Whether to clip out-of-boundary boxes. Default: False.
step(list|turple): Prior boxes step across width and height, If step(list|tuple): Prior boxes step across width and height, If
step[0] == 0.0/step[1] == 0.0, the density prior boxes step across step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
height/weight of the input will be automatically calculated. height/weight of the input will be automatically calculated.
Default: [0., 0.] Default: [0., 0.]
...@@ -2003,7 +2003,7 @@ def anchor_generator(input, ...@@ -2003,7 +2003,7 @@ def anchor_generator(input,
anchors, e.g. [0.5, 1.0, 2.0]. anchors, e.g. [0.5, 1.0, 2.0].
variance(list|tuple): The variances to be used in box regression deltas. variance(list|tuple): The variances to be used in box regression deltas.
Default:[0.1, 0.1, 0.2, 0.2]. Default:[0.1, 0.1, 0.2, 0.2].
stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0] stride(list|tuple): The anchors stride across width and height,e.g. [16.0, 16.0]
offset(float): Prior boxes center offset. Default: 0.5 offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the prior box op. Default: None. name(str): Name of the prior box op. Default: None.
......
...@@ -770,7 +770,7 @@ def dynamic_lstmp(input, ...@@ -770,7 +770,7 @@ def dynamic_lstmp(input,
the matrix of weights from the input gate to the input). the matrix of weights from the input gate to the input).
* :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \ * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
matrices for peephole connections. In our implementation, \ matrices for peephole connections. In our implementation, \
we use vectors to reprenset these diagonal weight matrices. we use vectors to represent these diagonal weight matrices.
* :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \ * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
bias vector). bias vector).
* :math:`\sigma`: The activation, such as logistic sigmoid function. * :math:`\sigma`: The activation, such as logistic sigmoid function.
...@@ -5083,7 +5083,7 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): ...@@ -5083,7 +5083,7 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
the dimension to normalization is rank(X) + axis. -1 is the the dimension to normalization is rank(X) + axis. -1 is the
last dimension. last dimension.
epsilon(float): The epsilon value is used to avoid division by zero, \ epsilon(float): The epsilon value is used to avoid division by zero, \
the defalut value is 1e-12. the default value is 1e-12.
name(str|None): A name for this layer(optional). If set None, the layer \ name(str|None): A name for this layer(optional). If set None, the layer \
will be named automatically. will be named automatically.
......
...@@ -714,11 +714,11 @@ class DetectionMAP(object): ...@@ -714,11 +714,11 @@ class DetectionMAP(object):
class_num (int): The class number. class_num (int): The class number.
background_label (int): The index of background label, the background background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all categories will be label will be ignored. If set to -1, then all categories will be
considered, 0 by defalut. considered, 0 by default.
overlap_threshold (float): The threshold for deciding true/false overlap_threshold (float): The threshold for deciding true/false
positive, 0.5 by defalut. positive, 0.5 by default.
evaluate_difficult (bool): Whether to consider difficult ground truth evaluate_difficult (bool): Whether to consider difficult ground truth
for evaluation, True by defalut. This argument does not work when for evaluation, True by default. This argument does not work when
gt_difficult is None. gt_difficult is None.
ap_version (string): The average precision calculation ways, it must be ap_version (string): The average precision calculation ways, it must be
'integral' or '11point'. Please check 'integral' or '11point'. Please check
......
...@@ -1563,7 +1563,7 @@ def fast_decode( ...@@ -1563,7 +1563,7 @@ def fast_decode(
} for cache in caches] } for cache in caches]
pre_pos = layers.elementwise_mul( pre_pos = layers.elementwise_mul(
x=layers.fill_constant_batch_size_like( x=layers.fill_constant_batch_size_like(
input=pre_enc_output, # cann't use pre_ids here since it has lod input=pre_enc_output, # can't use pre_ids here since it has lod
value=1, value=1,
shape=[-1, 1, 1], shape=[-1, 1, 1],
dtype=pre_ids.dtype), dtype=pre_ids.dtype),
......
...@@ -136,7 +136,7 @@ def multi_head_attention(queries, ...@@ -136,7 +136,7 @@ def multi_head_attention(queries,
# The current implementation of softmax_op only supports 2D tensor, # The current implementation of softmax_op only supports 2D tensor,
# consequently it cannot be directly used here. # consequently it cannot be directly used here.
# If to use the reshape_op, Besides, the shape of product inferred in # If to use the reshape_op, Besides, the shape of product inferred in
# compile-time is not the actual shape in run-time. It cann't be used # compile-time is not the actual shape in run-time. It can't be used
# to set the attribute of reshape_op. # to set the attribute of reshape_op.
# So, here define the softmax for temporary solution. # So, here define the softmax for temporary solution.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册