Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7fc2ce50
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7fc2ce50
编写于
1月 05, 2021
作者:
T
Thunderbrook
提交者:
GitHub
1月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add topo-aware in heter-ps (#30087) (#30117)
* add topo aware * resource.h * topo aware * format
上级
faeee3c3
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
300 addition
and
117 deletion
+300
-117
paddle/fluid/framework/fleet/fleet_wrapper.cc
paddle/fluid/framework/fleet/fleet_wrapper.cc
+17
-1
paddle/fluid/framework/fleet/heter_ps/cudf/concurrent_unordered_map.cuh.h
...mework/fleet/heter_ps/cudf/concurrent_unordered_map.cuh.h
+1
-1
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
+30
-0
paddle/fluid/framework/fleet/heter_ps/heter_comm.tpp
paddle/fluid/framework/fleet/heter_ps/heter_comm.tpp
+173
-67
paddle/fluid/framework/fleet/heter_ps/heter_resource.cc
paddle/fluid/framework/fleet/heter_ps/heter_resource.cc
+29
-13
paddle/fluid/framework/fleet/heter_ps/heter_resource.h
paddle/fluid/framework/fleet/heter_ps/heter_resource.h
+11
-7
paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h
paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h
+13
-12
paddle/fluid/framework/ps_gpu_worker.cc
paddle/fluid/framework/ps_gpu_worker.cc
+8
-4
paddle/fluid/pybind/fleet_wrapper_py.cc
paddle/fluid/pybind/fleet_wrapper_py.cc
+4
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
...e/fluid/incubate/fleet/parameter_server/pslib/__init__.py
+14
-12
未找到文件。
paddle/fluid/framework/fleet/fleet_wrapper.cc
浏览文件 @
7fc2ce50
...
...
@@ -1225,6 +1225,13 @@ void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
void
FleetWrapper
::
LoadWithWhitelist
(
const
uint64_t
table_id
,
const
std
::
string
&
path
,
const
int
mode
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
load_with_whitelist
(
table_id
,
path
,
std
::
to_string
(
mode
));
ret
.
wait
();
if
(
ret
.
get
()
!=
0
)
{
LOG
(
ERROR
)
<<
"load model of table id: "
<<
table_id
<<
", from path: "
<<
path
<<
" failed"
;
}
#else
VLOG
(
0
)
<<
"FleetWrapper::LoadWhitelist does nothing when no pslib"
;
#endif
...
...
@@ -1349,7 +1356,16 @@ int32_t FleetWrapper::SaveWithWhitelist(int table_id, const std::string& path,
const
int
mode
,
const
std
::
string
&
whitelist_path
)
{
#ifdef PADDLE_WITH_PSLIB
return
0
;
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
save_with_whitelist
(
table_id
,
path
,
std
::
to_string
(
mode
),
whitelist_path
);
ret
.
wait
();
int32_t
feasign_cnt
=
ret
.
get
();
if
(
feasign_cnt
==
-
1
)
{
LOG
(
ERROR
)
<<
"table save cache failed"
;
sleep
(
sleep_seconds_before_fail_exit_
);
exit
(
-
1
);
}
return
feasign_cnt
;
#else
VLOG
(
0
)
<<
"FleetWrapper::SaveCache does nothing when no pslib"
;
return
-
1
;
...
...
paddle/fluid/framework/fleet/heter_ps/cudf/concurrent_unordered_map.cuh.h
浏览文件 @
7fc2ce50
...
...
@@ -765,7 +765,7 @@ x.second );
unsigned
long
long
get_num_collisions
()
const
{
return
m_collisions
;
}
void
print
()
{
for
(
size_type
i
=
0
;
i
<
m_hashtbl_size
;
++
i
)
{
for
(
size_type
i
=
0
;
i
<
10
;
++
i
)
{
std
::
cout
<<
i
<<
": "
<<
m_hashtbl_values
[
i
].
first
<<
","
<<
m_hashtbl_values
[
i
].
second
<<
std
::
endl
;
}
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
浏览文件 @
7fc2ce50
...
...
@@ -68,6 +68,34 @@ class HeterComm {
Sgd
&
sgd
);
int
log2i
(
int
x
);
bool
need_transfer
(
int
send_id
,
int
receive_id
)
{
return
((
send_id
/
4
!=
receive_id
/
4
)
&&
(
send_id
+
4
)
%
8
!=
receive_id
);
}
int
get_transfer_devid
(
int
send_id
)
{
return
(
send_id
+
4
)
%
8
;
}
struct
Node
{
cudaStream_t
in_stream
;
cudaStream_t
out_stream
;
char
*
key_storage
;
char
*
val_storage
;
int
sync
;
int
key_bytes_len
;
int
val_bytes_len
;
int
gpu_num
;
};
struct
Path
{
std
::
vector
<
Node
>
nodes_
;
};
void
init_path
();
void
create_storage
(
int
start_index
,
int
end_index
,
int
keylen
,
int
vallen
,
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>&
local_strorage
);
void
walk_to_src
(
int
start_index
,
int
end_index
,
char
*
src_val
);
void
walk_to_dest
(
int
start_index
,
int
end_index
,
char
*
src_key
,
char
*
src_val
);
private:
using
Table
=
HashTable
<
KeyType
,
ValType
>
;
...
...
@@ -76,6 +104,8 @@ class HeterComm {
std
::
vector
<
Table
*>
tables_
;
std
::
shared_ptr
<
HeterPsResource
>
resource_
;
CustomGradMerger
merger_
;
int
topo_aware_
{
1
};
std
::
vector
<
std
::
vector
<
Path
>>
path_
;
};
}
// end namespace framework
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm.tpp
浏览文件 @
7fc2ce50
...
...
@@ -100,6 +100,131 @@ HeterComm<KeyType, ValType, GradType>::HeterComm(
auto
table
=
new
Table
(
capacity
/
load_factor_
);
tables_
.
push_back
(
table
);
}
init_path
();
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
init_path
()
{
int
total_gpu
=
resource_
->
total_gpu
();
path_
.
resize
(
total_gpu
);
if
(
!
topo_aware_
)
{
VLOG
(
1
)
<<
"init path without topo aware"
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
path_
[
i
].
resize
(
total_gpu
);
for
(
int
j
=
0
;
j
<
total_gpu
;
++
j
)
{
auto
&
nodes
=
path_
[
i
][
j
].
nodes_
;
nodes
.
resize
(
1
);
nodes
[
0
].
in_stream
=
resource_
->
comm_stream
(
i
,
j
);
nodes
[
0
].
out_stream
=
resource_
->
comm_stream
(
j
,
i
);
nodes
[
0
].
key_storage
=
NULL
;
nodes
[
0
].
val_storage
=
NULL
;
nodes
[
0
].
sync
=
0
;
nodes
[
0
].
gpu_num
=
j
;
}
}
}
else
{
VLOG
(
1
)
<<
"init path with topo aware"
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
path_
[
i
].
resize
(
total_gpu
);
for
(
int
j
=
0
;
j
<
total_gpu
;
++
j
)
{
auto
&
nodes
=
path_
[
i
][
j
].
nodes_
;
int
from
=
resource_
->
dev_id
(
i
);
int
to
=
resource_
->
dev_id
(
j
);
int
transfer_id
=
i
;
if
(
need_transfer
(
from
,
to
))
{
transfer_id
=
resource_
->
get_index_by_devid
(
get_transfer_devid
(
from
));
nodes
.
push_back
(
Node
());
Node
&
node
=
nodes
.
back
();
node
.
in_stream
=
resource_
->
comm_stream
(
i
,
transfer_id
);
node
.
out_stream
=
resource_
->
comm_stream
(
transfer_id
,
i
);
node
.
key_storage
=
NULL
;
node
.
val_storage
=
NULL
;
node
.
sync
=
1
;
node
.
gpu_num
=
transfer_id
;
}
nodes
.
push_back
(
Node
());
Node
&
node
=
nodes
.
back
();
node
.
in_stream
=
resource_
->
comm_stream
(
i
,
transfer_id
);
node
.
out_stream
=
resource_
->
comm_stream
(
transfer_id
,
i
);
node
.
key_storage
=
NULL
;
node
.
val_storage
=
NULL
;
node
.
sync
=
0
;
node
.
gpu_num
=
j
;
}
}
}
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
create_storage
(
int
start_index
,
int
end_index
,
int
keylen
,
int
vallen
,
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>&
local_storage
)
{
auto
&
nodes
=
path_
[
start_index
][
end_index
].
nodes_
;
for
(
size_t
i
=
0
;
i
<
nodes
.
size
();
++
i
)
{
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
));
platform
::
CUDAPlace
remote_place
=
platform
::
CUDAPlace
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
));
auto
key_mem
=
memory
::
AllocShared
(
remote_place
,
keylen
);
local_storage
.
push_back
(
key_mem
);
nodes
[
i
].
key_storage
=
reinterpret_cast
<
char
*>
(
key_mem
->
ptr
());
auto
val_mem
=
memory
::
AllocShared
(
remote_place
,
vallen
);
local_storage
.
push_back
(
val_mem
);
nodes
[
i
].
val_storage
=
reinterpret_cast
<
char
*>
(
val_mem
->
ptr
());
nodes
[
i
].
key_bytes_len
=
keylen
;
nodes
[
i
].
val_bytes_len
=
vallen
;
}
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
walk_to_dest
(
int
start_index
,
int
end_index
,
char
*
src_key
,
char
*
src_val
)
{
int
need_copy_val
=
0
;
if
(
src_val
)
{
need_copy_val
=
1
;
}
auto
&
nodes
=
path_
[
start_index
][
end_index
].
nodes_
;
for
(
size_t
i
=
0
;
i
<
nodes
.
size
();
++
i
)
{
cudaMemcpyAsync
(
nodes
[
i
].
key_storage
,
src_key
,
nodes
[
i
].
key_bytes_len
,
cudaMemcpyDefault
,
nodes
[
i
].
in_stream
);
if
(
need_copy_val
)
{
cudaMemcpyAsync
(
nodes
[
i
].
val_storage
,
src_val
,
nodes
[
i
].
val_bytes_len
,
cudaMemcpyDefault
,
nodes
[
i
].
in_stream
);
}
if
(
nodes
[
i
].
sync
)
{
cudaStreamSynchronize
(
nodes
[
i
].
in_stream
);
}
// cudaStreamSynchronize(nodes[i].in_stream);
src_key
=
nodes
[
i
].
key_storage
;
src_val
=
nodes
[
i
].
val_storage
;
}
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
walk_to_src
(
int
start_index
,
int
end_index
,
char
*
src_val
)
{
auto
&
nodes
=
path_
[
start_index
][
end_index
].
nodes_
;
int
len
=
nodes
.
size
();
char
*
start
=
NULL
;
for
(
int
i
=
len
-
1
;
i
>=
0
;
--
i
)
{
if
(
start
==
NULL
)
{
start
=
nodes
[
i
].
val_storage
;
continue
;
}
cudaMemcpyAsync
(
nodes
[
i
].
val_storage
,
start
,
nodes
[
i
].
val_bytes_len
,
cudaMemcpyDefault
,
nodes
[
i
].
out_stream
);
if
(
nodes
[
i
].
sync
)
{
cudaStreamSynchronize
(
nodes
[
i
].
out_stream
);
}
start
=
nodes
[
i
].
val_storage
;
}
cudaMemcpyAsync
(
src_val
,
nodes
[
0
].
val_storage
,
nodes
[
0
].
val_bytes_len
,
cudaMemcpyDefault
,
nodes
[
0
].
out_stream
);
// cudaStreamSynchronize(nodes[0].out_stream);
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
...
...
@@ -131,9 +256,10 @@ int HeterComm<KeyType, ValType, GradType>::get_index_by_devid(int devid) {
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
build_ps
(
int
num
,
KeyType
*
h_keys
,
ValType
*
h_vals
,
size_t
len
,
size_t
chunk_size
,
int
stream_num
)
{
ValType
*
h_vals
,
size_t
len
,
size_t
chunk_size
,
int
stream_num
)
{
if
(
len
<=
0
)
{
return
;
}
...
...
@@ -182,13 +308,15 @@ void HeterComm<KeyType, ValType, GradType>::build_ps(int num, KeyType* h_keys,
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
merge_grad
(
int
gpu_num
,
KeyType
*
d_keys
,
GradType
*
d_grads
,
size_t
len
,
int
&
uniq_len
)
{
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
merge_grad
(
int
gpu_num
,
KeyType
*
d_keys
,
GradType
*
d_grads
,
size_t
len
,
int
&
uniq_len
)
{
int
dev_id
=
resource_
->
dev_id
(
gpu_num
);
platform
::
CUDAPlace
place
=
platform
::
CUDAPlace
(
dev_id
);
platform
::
CUDADeviceGuard
guard
(
dev_id
);
auto
stream
=
resource_
->
stream
(
gpu_num
);
auto
stream
=
resource_
->
local_stream
(
gpu_num
,
0
);
size_t
temp_storage_bytes
;
...
...
@@ -240,7 +368,7 @@ void HeterComm<KeyType, ValType, GradType>::split_input_to_shard(
int
dev_id
=
resource_
->
dev_id
(
gpu_num
);
platform
::
CUDAPlace
place
=
platform
::
CUDAPlace
(
dev_id
);
platform
::
CUDADeviceGuard
guard
(
dev_id
);
auto
stream
=
resource_
->
stream
(
gpu_num
);
auto
stream
=
resource_
->
local_stream
(
gpu_num
,
0
);
auto
d_idx_tmp
=
memory
::
AllocShared
(
place
,
len
*
sizeof
(
int
));
int
*
d_idx_tmp_ptr
=
reinterpret_cast
<
int
*>
(
d_idx_tmp
->
ptr
());
...
...
@@ -272,9 +400,10 @@ void HeterComm<KeyType, ValType, GradType>::split_input_to_shard(
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
pull_sparse
(
int
num
,
KeyType
*
d_keys
,
ValType
*
d_vals
,
size_t
len
)
{
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
pull_sparse
(
int
num
,
KeyType
*
d_keys
,
ValType
*
d_vals
,
size_t
len
)
{
if
(
len
==
0
)
{
return
;
}
...
...
@@ -283,7 +412,7 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num, KeyType* d_keys
int
dev_id
=
resource_
->
dev_id
(
num
);
platform
::
CUDAPlace
place
=
platform
::
CUDAPlace
(
dev_id
);
platform
::
CUDADeviceGuard
guard
(
dev_id
);
auto
stream
=
resource_
->
stream
(
num
);
auto
stream
=
resource_
->
local_stream
(
num
,
0
);
int
grid_size
=
(
len
-
1
)
/
block_size_
+
1
;
...
...
@@ -318,28 +447,15 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num, KeyType* d_keys
cudaMemcpy
(
h_right
,
d_right_ptr
,
total_gpu
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
);
std
::
vector
<
KeyType
*>
d_remote_shard_keys_ptr
;
std
::
vector
<
ValType
*>
d_remote_shard_vals_ptr
;
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
d_remote_shard_keys
;
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
d_remote_shard_vals
;
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
local_storage
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
int
shard_len
=
h_right
[
i
]
-
h_left
[
i
]
+
1
;
if
(
shard_len
==
0
)
{
continue
;
}
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
platform
::
CUDAPlace
remote_place
=
platform
::
CUDAPlace
(
resource_
->
dev_id
(
i
));
d_remote_shard_keys
.
push_back
(
memory
::
AllocShared
(
remote_place
,
shard_len
*
sizeof
(
KeyType
)));
d_remote_shard_keys_ptr
.
push_back
(
reinterpret_cast
<
KeyType
*>
(
d_remote_shard_keys
[
i
]
->
ptr
()));
d_remote_shard_vals
.
push_back
(
memory
::
AllocShared
(
remote_place
,
shard_len
*
sizeof
(
ValType
)));
d_remote_shard_vals_ptr
.
push_back
(
reinterpret_cast
<
ValType
*>
(
d_remote_shard_vals
[
i
]
->
ptr
()));
create_storage
(
num
,
i
,
shard_len
*
sizeof
(
KeyType
),
shard_len
*
sizeof
(
ValType
),
local_storage
);
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
...
...
@@ -347,21 +463,23 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num, KeyType* d_keys
if
(
h_left
[
i
]
==
-
1
||
h_right
[
i
]
==
-
1
)
{
continue
;
}
cudaMemcpyAsync
(
d_remote_shard_keys_ptr
[
i
],
d_shard_keys_ptr
+
h_left
[
i
]
,
shard_len
*
sizeof
(
KeyType
),
cudaMemcpyDefault
,
stream
);
walk_to_dest
(
num
,
i
,
reinterpret_cast
<
char
*>
(
d_shard_keys_ptr
+
h_left
[
i
])
,
NULL
);
}
cudaStreamSynchronize
(
stream
);
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
if
(
h_left
[
i
]
==
-
1
)
{
continue
;
}
auto
&
node
=
path_
[
num
][
i
].
nodes_
.
back
();
cudaStreamSynchronize
(
node
.
in_stream
);
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
tables_
[
i
]
->
get
(
d_remote_shard_keys_ptr
[
i
],
d_remote_shard_vals_ptr
[
i
],
h_right
[
i
]
-
h_left
[
i
]
+
1
,
resource_
->
stream
(
i
));
tables_
[
i
]
->
get
(
reinterpret_cast
<
KeyType
*>
(
node
.
key_storage
),
reinterpret_cast
<
ValType
*>
(
node
.
val_storage
),
h_right
[
i
]
-
h_left
[
i
]
+
1
,
resource_
->
remote_stream
(
i
));
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
cudaStreamSynchronize
(
resource_
->
stream
(
i
));
cudaStreamSynchronize
(
resource_
->
remote_
stream
(
i
));
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
...
...
@@ -370,13 +488,12 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num, KeyType* d_keys
continue
;
}
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
cudaMemcpyAsync
(
d_shard_vals_ptr
+
h_left
[
i
],
d_remote_shard_vals_ptr
[
i
],
shard_len
*
sizeof
(
ValType
),
cudaMemcpyDefault
,
resource_
->
stream
(
i
));
walk_to_src
(
num
,
i
,
reinterpret_cast
<
char
*>
(
d_shard_vals_ptr
+
h_left
[
i
]));
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
cudaStreamSynchronize
(
resource_
->
stream
(
i
));
auto
&
node
=
path_
[
num
][
i
].
nodes_
.
front
();
cudaStreamSynchronize
(
node
.
out_stream
);
}
fill_dvals
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
d_shard_vals_ptr
,
d_vals
,
...
...
@@ -387,9 +504,9 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num, KeyType* d_keys
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
template
<
typename
Sgd
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
push_sparse
(
int
gpu_num
,
KeyType
*
d_keys
,
GradType
*
d_grads
,
size_t
len
,
Sgd
&
sgd
)
{
KeyType
*
d_keys
,
GradType
*
d_grads
,
size_t
len
,
Sgd
&
sgd
)
{
if
(
len
==
0
)
{
return
;
}
...
...
@@ -398,7 +515,7 @@ void HeterComm<KeyType, ValType, GradType>::push_sparse(int gpu_num,
int
dev_id
=
resource_
->
dev_id
(
gpu_num
);
platform
::
CUDAPlace
place
=
platform
::
CUDAPlace
(
dev_id
);
platform
::
CUDADeviceGuard
guard
(
dev_id
);
auto
stream
=
resource_
->
stream
(
gpu_num
);
auto
stream
=
resource_
->
local_stream
(
gpu_num
,
0
);
int
h_left
[
total_gpu
];
int
h_right
[
total_gpu
];
...
...
@@ -439,28 +556,15 @@ void HeterComm<KeyType, ValType, GradType>::push_sparse(int gpu_num,
cudaMemcpy
(
h_right
,
d_right_ptr
,
total_gpu
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
);
std
::
vector
<
KeyType
*>
d_remote_shard_keys_ptr
;
std
::
vector
<
GradType
*>
d_remote_shard_grads_ptr
;
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
d_remote_shard_keys
;
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
d_remote_shard_grads
;
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
local_storage
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
int
shard_len
=
h_right
[
i
]
-
h_left
[
i
]
+
1
;
if
(
h_left
[
i
]
==
-
1
||
h_right
[
i
]
==
-
1
)
{
continue
;
}
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
platform
::
CUDAPlace
remote_place
=
platform
::
CUDAPlace
(
resource_
->
dev_id
(
i
));
d_remote_shard_keys
.
push_back
(
memory
::
AllocShared
(
remote_place
,
shard_len
*
sizeof
(
KeyType
)));
d_remote_shard_keys_ptr
.
push_back
(
reinterpret_cast
<
KeyType
*>
(
d_remote_shard_keys
[
i
]
->
ptr
()));
d_remote_shard_grads
.
push_back
(
memory
::
AllocShared
(
remote_place
,
shard_len
*
sizeof
(
GradType
)));
d_remote_shard_grads_ptr
.
push_back
(
reinterpret_cast
<
GradType
*>
(
d_remote_shard_grads
[
i
]
->
ptr
()));
create_storage
(
gpu_num
,
i
,
shard_len
*
sizeof
(
KeyType
),
shard_len
*
sizeof
(
GradType
),
local_storage
);
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
...
...
@@ -468,24 +572,26 @@ void HeterComm<KeyType, ValType, GradType>::push_sparse(int gpu_num,
if
(
h_left
[
i
]
==
-
1
||
h_right
[
i
]
==
-
1
)
{
continue
;
}
cudaMemcpyAsync
(
d_remote_shard_keys_ptr
[
i
],
d_shard_keys_ptr
+
h_left
[
i
],
shard_len
*
sizeof
(
KeyType
),
cudaMemcpyDefault
,
stream
);
cudaMemcpyAsync
(
d_remote_shard_grads_ptr
[
i
],
d_shard_grads_ptr
+
h_left
[
i
],
shard_len
*
sizeof
(
GradType
),
cudaMemcpyDefault
,
stream
);
walk_to_dest
(
gpu_num
,
i
,
reinterpret_cast
<
char
*>
(
d_shard_keys_ptr
+
h_left
[
i
]),
reinterpret_cast
<
char
*>
(
d_shard_grads_ptr
+
h_left
[
i
]));
}
cudaStreamSynchronize
(
stream
);
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
if
(
h_left
[
i
]
==
-
1
||
h_right
[
i
]
==
-
1
)
{
continue
;
}
auto
&
node
=
path_
[
gpu_num
][
i
].
nodes_
.
back
();
cudaStreamSynchronize
(
node
.
in_stream
);
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
tables_
[
i
]
->
update
(
d_remote_shard_keys_ptr
[
i
],
d_remote_shard_grads_ptr
[
i
],
h_right
[
i
]
-
h_left
[
i
]
+
1
,
sgd
,
resource_
->
stream
(
i
));
tables_
[
i
]
->
update
(
reinterpret_cast
<
KeyType
*>
(
node
.
key_storage
),
reinterpret_cast
<
GradType
*>
(
node
.
val_storage
),
h_right
[
i
]
-
h_left
[
i
]
+
1
,
sgd
,
resource_
->
remote_stream
(
i
));
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
cudaStreamSynchronize
(
resource_
->
stream
(
i
));
cudaStreamSynchronize
(
resource_
->
remote_
stream
(
i
));
}
}
...
...
paddle/fluid/framework/fleet/heter_ps/heter_resource.cc
浏览文件 @
7fc2ce50
...
...
@@ -19,23 +19,35 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
GPUResource
::
GPUResource
(
int
dev_id
,
int
index
)
{
GPUResource
::
GPUResource
(
std
::
vector
<
int
>&
dev_ids
,
int
index
)
{
index_
=
index
;
dev_id_
=
dev_id
;
dev_ids_
=
dev_ids
;
dev_id_
=
dev_ids_
[
index
];
platform
::
CUDADeviceGuard
guard
(
dev_id_
);
local_streams_
.
resize
(
dev_ids_
.
size
());
comm_streams_
.
resize
(
dev_ids_
.
size
());
for
(
size_t
i
=
0
;
i
<
dev_ids_
.
size
();
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamCreateWithFlags
(
&
local_streams_
[
i
],
cudaStreamNonBlocking
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamCreateWithFlags
(
&
comm_streams_
[
i
],
cudaStreamNonBlocking
));
}
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamCreateWithFlags
(
&
stream_
,
cudaStreamNonBlocking
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamCreateWithFlags
(
&
copy_stream_
,
cudaStreamNonBlocking
));
cudaStreamCreateWithFlags
(
&
remote_stream_
,
cudaStreamNonBlocking
));
}
GPUResource
::~
GPUResource
()
{
platform
::
CUDADeviceGuard
guard
(
dev_id_
);
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamDestroy
(
stream_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamDestroy
(
copy_stream_
));
for
(
size_t
i
=
0
;
i
<
local_streams_
.
size
();
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamDestroy
(
local_streams_
[
i
]));
}
for
(
size_t
i
=
0
;
i
<
comm_streams_
.
size
();
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamDestroy
(
comm_streams_
[
i
]));
}
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamDestroy
(
remote_stream_
));
}
void
HeterPsResource
::
enable_p2p
()
{
...
...
@@ -64,18 +76,22 @@ HeterPsResource::HeterPsResource(const std::vector<int>& dev_ids) {
dev_ids_
=
dev_ids
;
for
(
size_t
i
=
0
;
i
<
dev_ids_
.
size
();
++
i
)
{
std
::
shared_ptr
<
GPUResource
>
resource
=
std
::
make_shared
<
GPUResource
>
(
dev_ids_
[
i
]
,
i
);
std
::
make_shared
<
GPUResource
>
(
dev_ids_
,
i
);
resources_
.
push_back
(
resource
);
devid_2_index_
[
dev_ids_
[
i
]]
=
i
;
}
}
cudaStream_t
HeterPsResource
::
copy_stream
(
int
num
)
{
return
resources_
[
num
]
->
copy_stream
();
cudaStream_t
HeterPsResource
::
comm_stream
(
int
gpu_num
,
int
stream_num
)
{
return
resources_
[
gpu_num
]
->
comm_stream
(
stream_num
);
}
cudaStream_t
HeterPsResource
::
local_stream
(
int
gpu_num
,
int
stream_num
)
{
return
resources_
[
gpu_num
]
->
local_stream
(
stream_num
);
}
cudaStream_t
HeterPsResource
::
stream
(
int
num
)
{
return
resources_
[
num
]
->
stream
();
cudaStream_t
HeterPsResource
::
remote_stream
(
int
gpu_
num
)
{
return
resources_
[
gpu_num
]
->
remote_
stream
();
}
int
HeterPsResource
::
dev_id
(
int
num
)
{
return
dev_ids_
[
num
];
}
...
...
paddle/fluid/framework/fleet/heter_ps/heter_resource.h
浏览文件 @
7fc2ce50
...
...
@@ -27,20 +27,23 @@ namespace framework {
class
GPUResource
{
public:
GPUResource
(
int
device_id
,
int
index
);
GPUResource
(
std
::
vector
<
int
>&
device_id
,
int
index
);
virtual
~
GPUResource
();
GPUResource
(
const
GPUResource
&
)
=
delete
;
GPUResource
&
operator
=
(
const
GPUResource
&
)
=
delete
;
int
dev_id
()
const
{
return
dev_id_
;
}
int
index
()
const
{
return
index_
;
}
cudaStream_t
stream
()
{
return
stream_
;
}
cudaStream_t
copy_stream
()
{
return
copy_stream_
;
}
cudaStream_t
local_stream
(
int
num
)
{
return
local_streams_
[
num
];
}
cudaStream_t
remote_stream
()
{
return
remote_stream_
;
}
cudaStream_t
comm_stream
(
int
num
)
{
return
comm_streams_
[
num
];
}
int
dev_id_
;
int
index_
;
cudaStream_t
stream_
;
cudaStream_t
copy_stream_
;
std
::
vector
<
int
>
dev_ids_
;
cudaStream_t
remote_stream_
;
std
::
vector
<
cudaStream_t
>
local_streams_
;
std
::
vector
<
cudaStream_t
>
comm_streams_
;
};
class
HeterPsResource
{
...
...
@@ -52,9 +55,10 @@ class HeterPsResource {
void
enable_p2p
();
int
total_gpu
();
int
get_index_by_devid
(
int
devid
);
cudaStream_t
stream
(
int
num
);
cudaStream_t
copy_stream
(
int
num
);
int
dev_id
(
int
num
);
cudaStream_t
local_stream
(
int
gpu_num
,
int
stream_num
);
cudaStream_t
remote_stream
(
int
gpu_num
);
cudaStream_t
comm_stream
(
int
gpu_num
,
int
stream_num
);
std
::
vector
<
std
::
shared_ptr
<
GPUResource
>>
resources_
;
std
::
vector
<
int
>
dev_ids_
;
...
...
paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h
浏览文件 @
7fc2ce50
...
...
@@ -15,18 +15,19 @@ limitations under the License. */
#pragma once
namespace
optimizer_config
{
__constant__
float
mf_create_thresholds
=
1
;
__constant__
float
nonclk_coeff
=
1
;
__constant__
float
mf_create_thresholds
=
0
;
__constant__
float
nonclk_coeff
=
0.1
;
__constant__
float
clk_coeff
=
1
;
__constant__
float
min_bound
=
-
10
000
;
__constant__
float
max_bound
=
10
000
;
__constant__
float
learning_rate
=
1
;
__constant__
float
initial_g2sum
=
1
;
__constant__
float
initial_range
=
1
;
__constant__
float
min_bound
=
-
10
;
__constant__
float
max_bound
=
10
;
__constant__
float
learning_rate
=
0.05
;
__constant__
float
initial_g2sum
=
3.0
;
__constant__
float
initial_range
=
1
e-4
;
__constant__
float
mf_learning_rate
=
1
;
__constant__
float
mf_initial_g2sum
=
1
;
__constant__
float
mf_initial_range
=
1
;
__constant__
float
mf_min_bound
=
1
;
__constant__
float
mf_max_bound
=
1
;
__constant__
float
mf_learning_rate
=
0.05
;
__constant__
float
mf_initial_g2sum
=
3.0
;
__constant__
float
mf_initial_range
=
1
e-4
;
__constant__
float
mf_min_bound
=
-
10
;
__constant__
float
mf_max_bound
=
1
0
;
}
paddle/fluid/framework/ps_gpu_worker.cc
浏览文件 @
7fc2ce50
...
...
@@ -143,16 +143,17 @@ void PSGPUWorker::SetNeedDump(bool need_dump_field) {
void
PSGPUWorker
::
DumpParam
()
{}
void
PSGPUWorker
::
TrainFiles
()
{
VLOG
(
3
)
<<
"train file A"
;
platform
::
SetNumThreads
(
1
);
platform
::
Timer
timeline
;
timeline
.
Start
();
int
total_ins_num
=
0
;
VLOG
(
3
)
<<
"train file B"
;
// how to accumulate fetched values here
device_reader_
->
Start
();
VLOG
(
3
)
<<
"train file C"
;
int
cur_batch
;
while
((
cur_batch
=
device_reader_
->
Next
())
>
0
)
{
VLOG
(
3
)
<<
"train file D"
;
total_ins_num
+=
cur_batch
;
for
(
auto
&
op
:
ops_
)
{
bool
need_skip
=
false
;
for
(
auto
t
=
0u
;
t
<
skip_ops_
.
size
();
++
t
)
{
...
...
@@ -169,6 +170,9 @@ void PSGPUWorker::TrainFiles() {
PrintFetchVars
();
thread_scope_
->
DropKids
();
}
timeline
.
Pause
();
VLOG
(
1
)
<<
"GpuPs worker "
<<
thread_id_
<<
" train cost "
<<
timeline
.
ElapsedSec
()
<<
" seconds, ins_num: "
<<
total_ins_num
;
return
;
}
...
...
paddle/fluid/pybind/fleet_wrapper_py.cc
浏览文件 @
7fc2ce50
...
...
@@ -57,7 +57,11 @@ void BindFleetWrapper(py::module* m) {
.
def
(
"get_cache_threshold"
,
&
framework
::
FleetWrapper
::
GetCacheThreshold
)
.
def
(
"cache_shuffle"
,
&
framework
::
FleetWrapper
::
CacheShuffle
)
.
def
(
"save_cache"
,
&
framework
::
FleetWrapper
::
SaveCache
)
.
def
(
"save_model_with_whitelist"
,
&
framework
::
FleetWrapper
::
SaveWithWhitelist
)
.
def
(
"load_model"
,
&
framework
::
FleetWrapper
::
LoadModel
)
.
def
(
"load_table_with_whitelist"
,
&
framework
::
FleetWrapper
::
LoadWithWhitelist
)
.
def
(
"clear_model"
,
&
framework
::
FleetWrapper
::
ClearModel
)
.
def
(
"clear_one_table"
,
&
framework
::
FleetWrapper
::
ClearOneTable
)
.
def
(
"stop_server"
,
&
framework
::
FleetWrapper
::
StopServer
)
...
...
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
浏览文件 @
7fc2ce50
...
...
@@ -101,15 +101,16 @@ class PSLib(Fleet):
# barrier_all for init_worker
self
.
_role_maker
.
_barrier_all
()
# prepare for client to client communication
if
self
.
_role_maker
.
is_worker
():
info
=
self
.
_fleet_ptr
.
get_clients_info
()
all_info
=
self
.
_role_maker
.
_worker_gather
(
info
[
0
])
self
.
_fleet_ptr
.
gather_clients
(
all_info
)
self
.
_fleet_ptr
.
set_client2client_config
(
self
.
_client2client_request_timeout_ms
,
self
.
_client2client_connect_timeout_ms
,
self
.
_client2client_max_retry
)
self
.
_fleet_ptr
.
create_client2client_connection
()
if
not
self
.
_opt_info
[
"use_ps_gpu"
]:
if
self
.
_role_maker
.
is_worker
():
info
=
self
.
_fleet_ptr
.
get_clients_info
()
all_info
=
self
.
_role_maker
.
_worker_gather
(
info
[
0
])
self
.
_fleet_ptr
.
gather_clients
(
all_info
)
self
.
_fleet_ptr
.
set_client2client_config
(
self
.
_client2client_request_timeout_ms
,
self
.
_client2client_connect_timeout_ms
,
self
.
_client2client_max_retry
)
self
.
_fleet_ptr
.
create_client2client_connection
()
# barrier for init model
self
.
_role_maker
.
_barrier_worker
()
if
self
.
_role_maker
.
is_first_worker
():
...
...
@@ -137,9 +138,10 @@ class PSLib(Fleet):
"var "
+
var_name
+
" not found in scope, "
+
"you should run startup program first"
)
var_name_list
.
append
(
var_name
)
self
.
_fleet_ptr
.
init_model
(
scope
,
int
(
table
.
table_id
),
var_name_list
)
if
not
self
.
_opt_info
[
"use_ps_gpu"
]:
self
.
_fleet_ptr
.
init_model
(
scope
,
int
(
table
.
table_id
),
var_name_list
)
# barrier for init model done
self
.
_role_maker
.
_barrier_worker
()
else
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录