Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7f9af125
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7f9af125
编写于
8月 17, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into huber_loss
上级
cbad985b
766299b8
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
132 addition
and
160 deletion
+132
-160
paddle/framework/backward.cc
paddle/framework/backward.cc
+20
-22
paddle/framework/backward.h
paddle/framework/backward.h
+1
-1
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+1
-2
paddle/framework/op_registry.cc
paddle/framework/op_registry.cc
+5
-6
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+3
-3
paddle/framework/op_registry_test.cc
paddle/framework/op_registry_test.cc
+2
-4
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+56
-85
paddle/memory/memory.cc
paddle/memory/memory.cc
+1
-0
paddle/operators/net_op.h
paddle/operators/net_op.h
+17
-13
paddle/operators/net_op_test.cc
paddle/operators/net_op_test.cc
+10
-13
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+16
-10
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+0
-1
未找到文件。
paddle/framework/backward.cc
浏览文件 @
7f9af125
...
...
@@ -15,6 +15,8 @@
#include "paddle/framework/backward.h"
#include <list>
#include <memory>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
...
...
@@ -43,11 +45,11 @@ static bool AllInSet(
return
all_in_set
;
}
static
std
::
shared
_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
std
::
make_shared
<
operators
::
NetOp
>
();
static
std
::
unique
_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
new
operators
::
NetOp
();
net_op
->
SetType
(
"@NOP@"
);
net_op
->
CompleteAddOp
();
return
net_op
;
return
std
::
unique_ptr
<
OperatorBase
>
(
net_op
)
;
}
// Get backward operator from a forward operator, a recursive implementation.
...
...
@@ -62,11 +64,7 @@ static std::shared_ptr<OperatorBase> NOP() {
// operator, in a complex situation, it maybe a NetOp.
//
// See Backward.h for details
static
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
);
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
static
std
::
unique_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
)
{
// If all input gradients of forwarding operator do not need to calculate,
...
...
@@ -91,7 +89,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
}
// Returned gradient network
auto
net
=
std
::
make_shared
<
operators
::
NetOp
>
(
);
auto
net
=
std
::
unique_ptr
<
operators
::
NetOp
>
(
new
operators
::
NetOp
()
);
if
(
forwardOp
.
IsNetOp
())
{
// Because forwardOp is a net op, it can static_cast.
...
...
@@ -105,14 +103,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// reversely travel forwardNet and collect all duplicate outputs.
for
(
auto
it
=
forwardNet
.
ops_
.
rbegin
();
it
!=
forwardNet
.
ops_
.
rend
();
++
it
,
++
local_op_id
)
{
auto
fwd
=
*
it
;
auto
&
fwd
=
*
it
;
auto
bwd
=
BackwardRecursive
(
*
fwd
,
no_grad_names
,
uniq_id
);
net
->
AddOp
(
bwd
);
ForEachVarName
(
bwd
->
Outputs
(),
[
&
dup_output_ops
,
local_op_id
](
const
std
::
string
&
out
)
{
dup_output_ops
[
out
].
emplace_back
(
local_op_id
);
return
false
;
});
net
->
AddOp
(
std
::
move
(
bwd
));
}
// Get unique ID for this method.
auto
uid
=
uniq_id
++
;
...
...
@@ -122,7 +120,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// to handle this case. For each duplicate output, rename it to an alias
// (original name with a offset), append an `add` op for its operator,
// and finally sum all the alias variable to the final output variable y.
using
Pos
=
std
::
pair
<
size_t
,
std
::
shared
_ptr
<
OperatorBase
>>
;
using
Pos
=
std
::
pair
<
size_t
,
std
::
unique
_ptr
<
OperatorBase
>>
;
std
::
list
<
Pos
>
insert_position
;
for
(
auto
&
dup_output_op
:
dup_output_ops
)
{
const
std
::
string
&
name
=
dup_output_op
.
first
;
...
...
@@ -150,13 +148,13 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
[](
const
Pos
&
l
,
const
Pos
&
r
)
{
return
l
.
first
>
r
.
first
;
});
for
(
auto
&
pos
:
insert_position
)
{
net
->
InsertOp
(
pos
.
first
+
1
,
pos
.
second
);
net
->
InsertOp
(
pos
.
first
+
1
,
std
::
move
(
pos
.
second
)
);
}
}
else
{
std
::
shared_ptr
<
OperatorBase
>
grad_op
=
OpRegistry
::
CreateGradOp
(
forwardOp
);
std
::
unique_ptr
<
OperatorBase
>
grad_op
(
OpRegistry
::
CreateGradOp
(
forwardOp
)
);
ForEachVarName
(
grad_op
->
Inputs
(),
[
&
no_grad_names
,
&
net
,
grad_op
](
const
std
::
string
&
grad_input
)
{
ForEachVarName
(
grad_op
->
Inputs
(),
[
&
no_grad_names
,
&
net
,
&
grad_op
](
const
std
::
string
&
grad_input
)
{
if
(
no_grad_names
.
count
(
grad_input
))
{
// +1 for \0
std
::
string
prefix
=
grad_input
.
substr
(
...
...
@@ -190,23 +188,23 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
const
auto
&
stepnet_op
=
*
static_cast
<
const
OperatorBase
*>
(
&
rnnop
.
stepnet
());
// create stepnet's gradient op
auto
grad_stepnet
=
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
uniq_id
);
rnn_grad_op
->
set_stepnet
(
std
::
static_pointer_cast
<
operators
::
NetOp
>
(
grad_stepnet
));
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
uniq_id
));
}
if
(
net
->
ops_
.
empty
())
{
// Current no aux op is added to network
return
grad_op
;
}
net
->
AddOp
(
grad_op
);
net
->
AddOp
(
std
::
move
(
grad_op
)
);
}
net
->
SetType
(
"@GENERATED_BACKWARD@"
);
net
->
CompleteAddOp
();
return
net
;
}
// namespace framework
return
std
::
unique_ptr
<
OperatorBase
>
(
static_cast
<
OperatorBase
*>
(
net
.
release
()));
}
// See header for comments
std
::
shared
_ptr
<
OperatorBase
>
Backward
(
std
::
unique
_ptr
<
OperatorBase
>
Backward
(
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_vars
)
{
std
::
unordered_set
<
std
::
string
>
no_grad_names
;
...
...
paddle/framework/backward.h
浏览文件 @
7f9af125
...
...
@@ -20,7 +20,7 @@ namespace framework {
// Create the backward operator from a forward operator.
// TODO(yuyang18): Add more API reference comment.
extern
std
::
shared
_ptr
<
OperatorBase
>
Backward
(
extern
std
::
unique
_ptr
<
OperatorBase
>
Backward
(
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_vars
);
}
// namespace framework
...
...
paddle/framework/backward_test.cc
浏览文件 @
7f9af125
...
...
@@ -180,8 +180,7 @@ TEST(Backward, simple_op_not_need_grad) {
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"x"
,
"b"
});
ASSERT_NE
(
no_input_gop
,
nullptr
);
ASSERT_TRUE
(
no_input_gop
->
IsNetOp
());
ASSERT_EQ
(
0UL
,
std
::
static_pointer_cast
<
ops
::
NetOp
>
(
no_input_gop
)
->
ops_
.
size
());
ASSERT_EQ
(
0UL
,
static_cast
<
ops
::
NetOp
*>
(
no_input_gop
.
get
())
->
ops_
.
size
());
}
TEST
(
Backward
,
net_fc_backward_normal
)
{
...
...
paddle/framework/op_registry.cc
浏览文件 @
7f9af125
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
std
::
string
&
type
,
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
)
{
...
...
@@ -28,10 +28,10 @@ std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
"Operator '%s' has not been registered."
,
type
);
it
->
second
.
checker_
->
Check
(
attrs
);
auto
op
=
it
->
second
.
creator_
(
type
,
inputs
,
outputs
,
attrs
);
return
std
::
shared
_ptr
<
OperatorBase
>
(
op
);
return
std
::
unique
_ptr
<
OperatorBase
>
(
op
);
}
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
OpDesc
&
op_desc
)
{
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
OpDesc
&
op_desc
)
{
VarNameMap
inputs
=
ConvertOpDescVarsToVarNameMap
(
op_desc
.
inputs
());
VarNameMap
outputs
=
ConvertOpDescVarsToVarNameMap
(
op_desc
.
outputs
());
AttributeMap
attrs
;
...
...
@@ -55,10 +55,9 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
return
ret_val
;
}
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateGradOp
(
const
OperatorBase
&
op
)
{
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateGradOp
(
const
OperatorBase
&
op
)
{
PADDLE_ENFORCE
(
!
op
.
IsNetOp
(),
"Use framework::Backward to get backward ops"
);
std
::
shared_ptr
<
OperatorBase
>
grad_op
(
BuildGradOp
(
&
op
));
return
grad_op
;
return
std
::
unique_ptr
<
OperatorBase
>
(
BuildGradOp
(
&
op
));
}
}
// namespace framework
...
...
paddle/framework/op_registry.h
浏览文件 @
7f9af125
...
...
@@ -77,17 +77,17 @@ class OpRegistry {
}
}
static
std
::
shared
_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
static
std
::
unique
_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
);
static
std
::
shared
_ptr
<
OperatorBase
>
CreateOp
(
const
OpDesc
&
op_desc
);
static
std
::
unique
_ptr
<
OperatorBase
>
CreateOp
(
const
OpDesc
&
op_desc
);
static
VarNameMap
ConvertOpDescVarsToVarNameMap
(
const
google
::
protobuf
::
RepeatedPtrField
<
OpDesc
::
Var
>&
op_desc_vars
);
static
std
::
shared
_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
);
static
std
::
unique
_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
);
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>&
op_info_map
()
{
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>
op_info_map_
;
...
...
paddle/framework/op_registry_test.cc
浏览文件 @
7f9af125
...
...
@@ -76,8 +76,7 @@ TEST(OpRegistry, CreateOp) {
attr
->
set_type
(
paddle
::
framework
::
AttrType
::
FLOAT
);
attr
->
set_f
(
scale
);
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
op
->
Run
(
scope
,
dev_ctx
);
...
...
@@ -118,8 +117,7 @@ TEST(OpRegistry, DefaultValue) {
ASSERT_TRUE
(
op_desc
.
IsInitialized
());
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
op
->
Run
(
scope
,
dev_ctx
);
...
...
paddle/framework/pybind.cc
浏览文件 @
7f9af125
...
...
@@ -48,29 +48,6 @@ namespace framework {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
ClassType
>
void
ExposeOperator
(
ClassType
&
m
)
{
m
.
def
(
"infer_shape"
,
&
ClassType
::
type
::
InferShape
)
.
def
(
"run"
,
&
ClassType
::
type
::
Run
)
.
def
(
"type"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
string
{
return
op
.
Type
();
})
.
def
(
"outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
{
return
op
.
Outputs
();
})
.
def
(
"inputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
Inputs
();
})
.
def
(
"__str__"
,
&
ClassType
::
type
::
DebugString
)
.
def
(
"no_intermediate_outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
OutputVars
(
false
);
})
.
def
(
"support_gpu"
,
&
ClassType
::
type
::
SupportGPU
);
}
static
size_t
UniqueIntegerGenerator
()
{
static
std
::
atomic
<
size_t
>
generator
;
return
generator
.
fetch_add
(
1
);
...
...
@@ -207,75 +184,69 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
py
::
init
<>
())
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
CPUPlace
&>
);
py
::
class_
<
OperatorBase
,
std
::
shared_ptr
<
OperatorBase
>>
operator_base
(
m
,
"Operator"
);
operator_base
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
return
OpRegistry
::
CreateOp
(
desc
);
});
operator_base
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
return
Backward
(
forwardOp
,
no_grad_vars
);
});
ExposeOperator
(
operator_base
);
py
::
class_
<
operators
::
NetOp
,
std
::
shared_ptr
<
operators
::
NetOp
>>
net
(
m
,
"Net"
);
net
.
def_static
(
"create"
,
[]()
->
std
::
shared_ptr
<
operators
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
operators
::
NetOp
>
();
retv
->
SetType
(
"plain_net"
);
return
retv
;
})
.
def
(
"add_op"
,
&
operators
::
NetOp
::
AddOp
)
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
net
));
})
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
RecurrentOp
>
&
rnn
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
rnn
));
py
::
class_
<
OperatorBase
>
(
m
,
"Operator"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
return
OpRegistry
::
CreateOp
(
desc
);
})
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
return
Backward
(
forwardOp
,
no_grad_vars
).
release
();
})
.
def
(
"infer_shape"
,
&
OperatorBase
::
InferShape
)
.
def
(
"run"
,
&
OperatorBase
::
Run
)
.
def
(
"type"
,
[](
const
OperatorBase
&
op
)
->
std
::
string
{
return
op
.
Type
();
})
.
def
(
"outputs"
,
[](
const
OperatorBase
&
op
)
->
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
{
return
op
.
Outputs
();
})
.
def
(
"inputs"
,
[](
const
OperatorBase
&
op
)
{
return
op
.
Inputs
();
})
.
def
(
"__str__"
,
&
OperatorBase
::
DebugString
)
.
def
(
"no_intermediate_outputs"
,
[](
const
OperatorBase
&
op
)
{
return
op
.
OutputVars
(
false
);
})
.
def
(
"support_gpu"
,
&
OperatorBase
::
SupportGPU
);
py
::
class_
<
operators
::
NetOp
,
OperatorBase
>
(
m
,
"Net"
)
.
def_static
(
"create"
,
[]()
->
operators
::
NetOp
*
{
auto
*
retv
=
new
operators
::
NetOp
;
retv
->
SetType
(
"plain_net"
);
return
retv
;
})
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
OperatorBase
&
op
)
{
self
.
AddOp
(
op
);
})
.
def
(
"complete_add_op"
,
&
operators
::
NetOp
::
CompleteAddOp
)
.
def
(
"complete_add_op"
,
[](
std
::
shared_ptr
<
operators
::
NetOp
>
&
self
)
{
self
->
CompleteAddOp
();
});
ExposeOperator
(
net
);
// recurrent_op
py
::
class_
<
operators
::
RecurrentOp
,
std
::
shared_ptr
<
operators
::
RecurrentOp
>>
rnn
(
m
,
"RecurrentOp"
);
rnn
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
std
::
shared_ptr
<
operators
::
RecurrentOp
>
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
std
::
dynamic_pointer_cast
<
operators
::
RecurrentOp
>
(
rnn_op
);
})
.
def
(
"set_stepnet"
,
[](
operators
::
RecurrentOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
set_stepnet
(
net
);
});
ExposeOperator
(
rnn
);
py
::
class_
<
operators
::
RecurrentOp
,
OperatorBase
>
(
m
,
"RecurrentOp"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
operators
::
RecurrentOp
*
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
static_cast
<
operators
::
RecurrentOp
*>
(
rnn_op
.
release
());
})
.
def
(
"set_stepnet"
,
[](
operators
::
RecurrentOp
&
self
,
const
operators
::
NetOp
&
net
)
->
void
{
self
.
set_stepnet
(
net
.
Clone
());
});
m
.
def
(
"unique_integer"
,
UniqueIntegerGenerator
);
...
...
paddle/memory/memory.cc
浏览文件 @
7f9af125
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <algorithm> // for transform
#include <cstring> // for memcpy
#include <memory> // for unique_ptr
#include <mutex> // for call_once
#include "paddle/memory/detail/buddy_allocator.h"
...
...
paddle/operators/net_op.h
浏览文件 @
7f9af125
...
...
@@ -41,15 +41,13 @@ class NetOp : public framework::OperatorBase {
NetOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
);
NetOp
(
const
NetOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
NetOp
(
const
NetOp
&
o
)
:
framework
::
OperatorBase
(
o
.
type_
,
{},
{},
o
.
attrs_
)
{
this
->
ops_
.
reserve
(
o
.
ops_
.
size
());
std
::
transform
(
o
.
ops_
.
begin
(),
o
.
ops_
.
end
(),
std
::
back_inserter
(
this
->
ops_
),
[](
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
->
std
::
shared_ptr
<
OperatorBase
>
{
return
std
::
shared_ptr
<
OperatorBase
>
(
op
->
Clone
());
});
std
::
transform
(
o
.
ops_
.
begin
(),
o
.
ops_
.
end
(),
std
::
back_inserter
(
this
->
ops_
),
[](
const
std
::
unique_ptr
<
framework
::
OperatorBase
>&
op
)
{
return
std
::
unique_ptr
<
framework
::
OperatorBase
>
(
op
->
Clone
());
});
this
->
CompleteAddOp
();
}
...
...
@@ -86,21 +84,27 @@ class NetOp : public framework::OperatorBase {
return
true
;
}
void
AddOp
(
const
framework
::
OperatorBase
&
op
)
{
AddOp
(
op
.
Clone
());
}
/**
* @brief Add an operator by ptr
*/
void
AddOp
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
AddOp
(
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot AddOp when this network is sealed"
);
PADDLE_ENFORCE_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
ops_
.
push_back
(
op
);
ops_
.
push_back
(
std
::
move
(
op
)
);
}
void
InsertOp
(
size_t
pos
,
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
InsertOp
(
size_t
pos
,
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot InsertOp when this network is sealed"
);
PADDLE_ENFORCE_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
PADDLE_ENFORCE_LE
(
pos
,
ops_
.
size
(),
"Out of range"
);
ops_
.
insert
(
ops_
.
begin
()
+
pos
,
op
);
ops_
.
insert
(
ops_
.
begin
()
+
pos
,
std
::
move
(
op
));
}
void
InsertOp
(
size_t
pos
,
const
framework
::
OperatorBase
&
op
)
{
InsertOp
(
pos
,
op
.
Clone
());
}
void
CompleteAddOp
(
bool
calculate
=
true
);
...
...
@@ -112,7 +116,7 @@ class NetOp : public framework::OperatorBase {
std
::
unique_ptr
<
framework
::
OperatorBase
>
Clone
()
const
override
;
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>
ops_
;
std
::
vector
<
std
::
unique_ptr
<
framework
::
OperatorBase
>>
ops_
;
private:
bool
add_op_done_
{
false
};
...
...
paddle/operators/net_op_test.cc
浏览文件 @
7f9af125
...
...
@@ -38,15 +38,12 @@ TEST(OpKernel, all) {
auto
net
=
std
::
make_shared
<
NetOp
>
();
ASSERT_NE
(
net
,
nullptr
);
auto
op1
=
std
::
shared
_ptr
<
TestOp
>
(
net
->
AddOp
(
std
::
unique
_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
->
AddOp
(
op1
);
auto
op2
=
std
::
shared_ptr
<
TestOp
>
(
{{
"Out"
,
{
"y"
}}},
{})));
net
->
AddOp
(
std
::
unique_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"X"
,
{
"y"
}},
{
"W"
,
{
"w2"
}},
{
"b"
,
{
"b2"
}}},
{{
"Out"
,
{
"z"
}}},
{}));
net
->
AddOp
(
op2
);
{{
"Out"
,
{
"z"
}}},
{})));
net
->
CompleteAddOp
();
AssertSameVectorWithoutOrder
({
"x"
,
"w1"
,
"b1"
,
"w2"
,
"b2"
},
...
...
@@ -61,21 +58,21 @@ TEST(OpKernel, all) {
TEST
(
NetOp
,
insert_op
)
{
NetOp
net
;
auto
op1
=
std
::
shared
_ptr
<
framework
::
NOP
>
(
auto
op1
=
std
::
unique
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
(
"empty"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
.
AddOp
(
op1
);
net
.
InsertOp
(
0
,
op1
);
net
.
AddOp
(
*
op1
);
net
.
InsertOp
(
0
,
*
op1
);
ASSERT_EQ
(
2UL
,
net
.
ops_
.
size
());
net
.
InsertOp
(
2
,
op1
);
net
.
InsertOp
(
2
,
std
::
move
(
op1
)
);
ASSERT_EQ
(
3UL
,
net
.
ops_
.
size
());
}
TEST
(
NetOp
,
Clone
)
{
NetOp
net
;
net
.
AddOp
(
std
::
shared
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty"
,
{},
{},
{}}));
net
.
AddOp
(
std
::
shared
_ptr
<
framework
::
NOP
>
(
std
::
unique
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty"
,
{},
{},
{}}));
net
.
AddOp
(
std
::
unique
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty2"
,
{},
{},
{}}));
net
.
CompleteAddOp
(
true
);
auto
new_net_op
=
net
.
Clone
();
...
...
paddle/operators/recurrent_op.h
浏览文件 @
7f9af125
...
...
@@ -34,7 +34,8 @@ class RecurrentAlgorithm {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
void
Init
(
rnn
::
Argument
*
arg
,
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
arg
;
stepnet_
=
stepnet
;
...
...
@@ -63,7 +64,7 @@ class RecurrentAlgorithm {
void
InitMemories
(
framework
::
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
private:
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet_
;
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
};
...
...
@@ -80,7 +81,8 @@ class RecurrentGradientAlgorithm {
* operator.
*/
public:
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
void
Init
(
rnn
::
Argument
*
arg
,
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
std
::
move
(
arg
);
stepnet_
=
stepnet
;
...
...
@@ -107,7 +109,7 @@ class RecurrentGradientAlgorithm {
private:
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet_
;
};
class
RecurrentOp
:
public
framework
::
OperatorBase
{
...
...
@@ -133,15 +135,17 @@ class RecurrentOp : public framework::OperatorBase {
alg_
.
Run
(
scope
,
dev_ctx
);
}
void
set_stepnet
(
std
::
shared_ptr
<
NetOp
>
net
)
{
stepnet_
=
net
;
}
const
NetOp
&
stepnet
()
const
{
return
*
stepnet_
;
}
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
}
const
OperatorBase
&
stepnet
()
const
{
return
*
stepnet_
;
}
static
const
rnn
::
ArgumentName
kArgName
;
private:
RecurrentAlgorithm
alg_
;
rnn
::
Argument
arg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
};
class
RecurrentGradientOp
:
public
framework
::
OperatorBase
{
...
...
@@ -171,12 +175,14 @@ class RecurrentGradientOp : public framework::OperatorBase {
static
const
rnn
::
ArgumentName
kArgName
;
void
set_stepnet
(
const
std
::
shared_ptr
<
NetOp
>&
net
)
{
stepnet_
=
net
;
}
const
NetOp
&
stepnet
()
const
{
return
*
stepnet_
;
}
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
}
const
OperatorBase
&
stepnet
()
const
{
return
*
stepnet_
;
}
private:
RecurrentGradientAlgorithm
alg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
rnn
::
Argument
arg_
;
};
...
...
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
7f9af125
...
...
@@ -165,7 +165,6 @@ class GradientChecker(unittest.TestCase):
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
bwd_outputs
=
backward_op
.
outputs
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录