Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7f3e6ca5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7f3e6ca5
编写于
9月 04, 2020
作者:
Y
yaoxuefeng
提交者:
GitHub
9月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cuda generator (#26786)
上级
c4846196
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
523 addition
and
18 deletion
+523
-18
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/generator.cc
paddle/fluid/framework/generator.cc
+53
-0
paddle/fluid/framework/generator.h
paddle/fluid/framework/generator.h
+22
-0
paddle/fluid/operators/bernoulli_op.cu
paddle/fluid/operators/bernoulli_op.cu
+0
-1
paddle/fluid/operators/dropout_op.cu
paddle/fluid/operators/dropout_op.cu
+47
-0
paddle/fluid/operators/gaussian_random_op.cu
paddle/fluid/operators/gaussian_random_op.cu
+53
-7
paddle/fluid/operators/randint_op.cu
paddle/fluid/operators/randint_op.cu
+10
-1
paddle/fluid/operators/truncated_gaussian_random_op.cu
paddle/fluid/operators/truncated_gaussian_random_op.cu
+53
-0
paddle/fluid/operators/uniform_random_op.cu
paddle/fluid/operators/uniform_random_op.cu
+56
-5
paddle/fluid/pybind/generator_py.cc
paddle/fluid/pybind/generator_py.cc
+3
-2
python/paddle/__init__.py
python/paddle/__init__.py
+2
-0
python/paddle/fluid/tests/unittests/test_cuda_random_seed.py
python/paddle/fluid/tests/unittests/test_cuda_random_seed.py
+163
-0
python/paddle/framework/random.py
python/paddle/framework/random.py
+60
-1
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
7f3e6ca5
...
@@ -272,7 +272,7 @@ cc_test(op_compatible_info_test SRCS op_compatible_info_test.cc DEPS op_compatib
...
@@ -272,7 +272,7 @@ cc_test(op_compatible_info_test SRCS op_compatible_info_test.cc DEPS op_compatib
cc_library
(
save_load_util SRCS save_load_util DEPS tensor scope layer
)
cc_library
(
save_load_util SRCS save_load_util DEPS tensor scope layer
)
cc_test
(
save_load_util_test SRCS save_load_util_test.cc DEPS save_load_util tensor scope layer
)
cc_test
(
save_load_util_test SRCS save_load_util_test.cc DEPS save_load_util tensor scope layer
)
cc_library
(
generator SRCS generator.cc
)
cc_library
(
generator SRCS generator.cc
DEPS enforce place
)
# Get the current working branch
# Get the current working branch
execute_process
(
execute_process
(
...
...
paddle/fluid/framework/generator.cc
浏览文件 @
7f3e6ca5
...
@@ -21,10 +21,46 @@ limitations under the License. */
...
@@ -21,10 +21,46 @@ limitations under the License. */
#include <unordered_map>
#include <unordered_map>
#include <unordered_set>
#include <unordered_set>
#include <utility>
#include <utility>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
const
std
::
shared_ptr
<
Generator
>&
GetDefaultCUDAGenerator
(
int64_t
device_id
)
{
#ifdef PADDLE_WITH_CUDA
static
int64_t
num_cuda_devices
=
-
1
;
static
std
::
once_flag
num_devices_init_flag
;
static
std
::
deque
<
std
::
once_flag
>
cuda_device_flags
;
static
std
::
vector
<
std
::
shared_ptr
<
Generator
>>
default_cuda_generators
;
std
::
call_once
(
num_devices_init_flag
,
[]()
{
num_cuda_devices
=
paddle
::
platform
::
GetCUDADeviceCount
();
cuda_device_flags
.
resize
(
num_cuda_devices
);
default_cuda_generators
.
resize
(
num_cuda_devices
);
});
if
(
device_id
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"cuda device id shoule be greater than 0"
));
}
std
::
call_once
(
cuda_device_flags
[
device_id
],
[
device_id
]()
{
default_cuda_generators
[
device_id
]
=
std
::
make_shared
<
Generator
>
(
GetRandomSeed
(),
device_id
);
VLOG
(
4
)
<<
"initial seed: "
<<
default_cuda_generators
[
device_id
]
->
GetCurrentSeed
();
});
return
default_cuda_generators
[
device_id
];
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"getDefaultCUDAGenerator only support in CUDA place"
));
#endif
}
const
std
::
shared_ptr
<
Generator
>&
DefaultCPUGenerator
()
{
const
std
::
shared_ptr
<
Generator
>&
DefaultCPUGenerator
()
{
static
auto
default_cpu_generator
=
static
auto
default_cpu_generator
=
std
::
make_shared
<
Generator
>
(
GetRandomSeed
());
std
::
make_shared
<
Generator
>
(
GetRandomSeed
());
...
@@ -103,6 +139,7 @@ uint64_t Generator::Seed() {
...
@@ -103,6 +139,7 @@ uint64_t Generator::Seed() {
void
Generator
::
SetCurrentSeed
(
uint64_t
seed
)
{
void
Generator
::
SetCurrentSeed
(
uint64_t
seed
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
this
->
mu_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
this
->
mu_
);
this
->
state_
.
current_seed
=
seed
;
this
->
state_
.
current_seed
=
seed
;
this
->
state_
.
thread_offset
=
0
;
std
::
seed_seq
seq
({
seed
});
std
::
seed_seq
seq
({
seed
});
this
->
engine_
->
seed
(
seq
);
this
->
engine_
->
seed
(
seq
);
}
}
...
@@ -123,6 +160,22 @@ uint64_t Generator::Random64() {
...
@@ -123,6 +160,22 @@ uint64_t Generator::Random64() {
return
(
*
engine
)();
return
(
*
engine
)();
}
}
std
::
pair
<
uint64_t
,
uint64_t
>
Generator
::
IncrementOffset
(
uint64_t
increament_offset
)
{
uint64_t
cur_offset
=
this
->
state_
.
thread_offset
;
#ifdef PADDLE_WITH_CUDA
std
::
lock_guard
<
std
::
mutex
>
lock
(
this
->
mu_
);
this
->
state_
.
thread_offset
+=
increament_offset
;
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Increment Offset only support in CUDA place"
));
#endif
return
std
::
make_pair
(
static_cast
<
int
>
(
this
->
state_
.
current_seed
),
cur_offset
);
}
void
Generator
::
SetIsInitPy
(
bool
is_init_py
)
{
void
Generator
::
SetIsInitPy
(
bool
is_init_py
)
{
this
->
is_init_py_
=
is_init_py
;
this
->
is_init_py_
=
is_init_py
;
VLOG
(
4
)
<<
"SetIsInitPy:"
<<
this
->
is_init_py_
;
VLOG
(
4
)
<<
"SetIsInitPy:"
<<
this
->
is_init_py_
;
...
...
paddle/fluid/framework/generator.h
浏览文件 @
7f3e6ca5
...
@@ -38,6 +38,7 @@ static uint64_t GetRandomSeed() {
...
@@ -38,6 +38,7 @@ static uint64_t GetRandomSeed() {
struct
GeneratorState
{
struct
GeneratorState
{
int64_t
device
=
-
1
;
int64_t
device
=
-
1
;
uint64_t
current_seed
=
34342423252
;
uint64_t
current_seed
=
34342423252
;
uint64_t
thread_offset
=
0
;
std
::
mt19937_64
cpu_engine
;
std
::
mt19937_64
cpu_engine
;
};
};
...
@@ -49,6 +50,7 @@ struct Generator {
...
@@ -49,6 +50,7 @@ struct Generator {
this
->
state_
.
cpu_engine
=
*
engine
;
this
->
state_
.
cpu_engine
=
*
engine
;
this
->
state_
.
device
=
-
1
;
this
->
state_
.
device
=
-
1
;
this
->
state_
.
current_seed
=
seed
;
this
->
state_
.
current_seed
=
seed
;
this
->
state_
.
thread_offset
=
0
;
this
->
engine_
=
engine
;
this
->
engine_
=
engine
;
VLOG
(
4
)
<<
"initial seed: "
<<
this
->
state_
.
current_seed
VLOG
(
4
)
<<
"initial seed: "
<<
this
->
state_
.
current_seed
<<
", cpu engine: "
<<
&
this
->
state_
.
cpu_engine
;
<<
", cpu engine: "
<<
&
this
->
state_
.
cpu_engine
;
...
@@ -59,11 +61,25 @@ struct Generator {
...
@@ -59,11 +61,25 @@ struct Generator {
this
->
state_
.
cpu_engine
=
*
engine
;
this
->
state_
.
cpu_engine
=
*
engine
;
this
->
state_
.
device
=
-
1
;
this
->
state_
.
device
=
-
1
;
this
->
state_
.
current_seed
=
seed
;
this
->
state_
.
current_seed
=
seed
;
this
->
state_
.
thread_offset
=
0
;
this
->
engine_
=
engine
;
this
->
engine_
=
engine
;
VLOG
(
4
)
<<
"initial seed: "
<<
this
->
state_
.
current_seed
VLOG
(
4
)
<<
"initial seed: "
<<
this
->
state_
.
current_seed
<<
", cpu engine: "
<<
&
this
->
state_
.
cpu_engine
;
<<
", cpu engine: "
<<
&
this
->
state_
.
cpu_engine
;
this
->
is_init_py_
=
true
;
// TODO(zhiqiu): remove it in future
this
->
is_init_py_
=
true
;
// TODO(zhiqiu): remove it in future
}
}
Generator
(
uint64_t
seed
,
uint64_t
device_id
)
{
std
::
seed_seq
seq
({
seed
});
auto
engine
=
std
::
make_shared
<
std
::
mt19937_64
>
(
seq
);
this
->
state_
.
cpu_engine
=
*
engine
;
this
->
state_
.
device
=
device_id
;
this
->
state_
.
current_seed
=
seed
;
this
->
state_
.
thread_offset
=
0
;
this
->
engine_
=
engine
;
VLOG
(
4
)
<<
"initial seed: "
<<
this
->
state_
.
current_seed
<<
", cpu engine: "
<<
&
this
->
state_
.
cpu_engine
;
this
->
is_init_py_
=
false
;
// TODO(zhiqiu): remove it in future
}
Generator
(
const
Generator
&
other
)
=
delete
;
Generator
(
const
Generator
&
other
)
=
delete
;
// get random state
// get random state
...
@@ -83,8 +99,11 @@ struct Generator {
...
@@ -83,8 +99,11 @@ struct Generator {
uint64_t
Random64
();
uint64_t
Random64
();
std
::
pair
<
uint64_t
,
uint64_t
>
IncrementOffset
(
uint64_t
increament_offset
);
void
SetIsInitPy
(
bool
);
void
SetIsInitPy
(
bool
);
bool
GetIsInitPy
()
const
;
bool
GetIsInitPy
()
const
;
uint64_t
get_device_id
()
{
return
this
->
state_
.
device
;
}
private:
private:
GeneratorState
state_
;
GeneratorState
state_
;
...
@@ -105,5 +124,8 @@ std::shared_ptr<std::mt19937_64> OpDefaultCPUEngine();
...
@@ -105,5 +124,8 @@ std::shared_ptr<std::mt19937_64> OpDefaultCPUEngine();
std
::
shared_ptr
<
std
::
mt19937_64
>
GetCPURandomEngine
(
uint64_t
);
std
::
shared_ptr
<
std
::
mt19937_64
>
GetCPURandomEngine
(
uint64_t
);
const
std
::
shared_ptr
<
Generator
>&
GetDefaultCUDAGenerator
(
int64_t
device_id
=
-
1
);
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/bernoulli_op.cu
浏览文件 @
7f3e6ca5
...
@@ -16,7 +16,6 @@ limitations under the License. */
...
@@ -16,7 +16,6 @@ limitations under the License. */
#include <thrust/random.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/bernoulli_op.h"
#include "paddle/fluid/operators/bernoulli_op.h"
...
...
paddle/fluid/operators/dropout_op.cu
浏览文件 @
7f3e6ca5
...
@@ -96,6 +96,42 @@ __global__ void RandomGeneratorWithSeed(const size_t n, const int* seed,
...
@@ -96,6 +96,42 @@ __global__ void RandomGeneratorWithSeed(const size_t n, const int* seed,
}
}
}
}
template
<
typename
T
,
typename
MaskType
>
__global__
void
RandomGeneratorWithGenerator
(
const
size_t
n
,
uint64_t
seed
,
const
float
dropout_prob
,
const
T
*
src
,
MaskType
*
mask_data
,
T
*
dst
,
bool
is_upscale_in_train
,
uint64_t
increment
)
{
curandStatePhilox4_32_10_t
state
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
step_size
=
0
;
MaskType
mask
;
T
dest
;
for
(;
idx
<
n
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
s
=
src
[
idx
];
if
(
step_size
==
0
)
{
curand_init
(
seed
,
idx
,
increment
,
&
state
);
step_size
=
blockDim
.
x
*
gridDim
.
x
;
}
else
{
curand_init
(
seed
,
idx
,
increment
,
&
state
);
}
if
(
curand_uniform
(
&
state
)
<
dropout_prob
)
{
mask
=
0
;
dest
=
0
;
}
else
{
mask
=
1
;
if
(
is_upscale_in_train
)
{
dest
=
s
/
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
}
else
{
dest
=
s
;
}
}
mask_data
[
idx
]
=
mask
;
dst
[
idx
]
=
dest
;
}
}
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
// implement uniform random.
...
@@ -150,6 +186,17 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
...
@@ -150,6 +186,17 @@ class GPUDropoutKernel : public framework::OpKernel<T> {
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
}
}
int
device_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
())
.
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
(
gen_cuda
->
GetIsInitPy
()
&&
(
!
context
.
Attr
<
bool
>
(
"fix_seed"
)))
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
1
);
RandomGeneratorWithGenerator
<
T
,
uint8_t
><<<
grid
,
threads
,
0
,
stream
>>>
(
size
,
seed_offset
.
first
,
dropout_prob
,
x_data
,
mask_data
,
y_data
,
upscale_in_train
,
seed_offset
.
second
);
return
;
}
RandomGenerator
<
T
,
uint8_t
><<<
grid
,
threads
,
0
,
stream
>>>
(
RandomGenerator
<
T
,
uint8_t
><<<
grid
,
threads
,
0
,
stream
>>>
(
size
,
seed_data
,
dropout_prob
,
x_data
,
mask_data
,
y_data
,
size
,
seed_data
,
dropout_prob
,
x_data
,
mask_data
,
y_data
,
upscale_in_train
);
upscale_in_train
);
...
...
paddle/fluid/operators/gaussian_random_op.cu
浏览文件 @
7f3e6ca5
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <thrust/random.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/operators/fill_constant_op.h"
...
@@ -24,15 +25,20 @@ template <typename T>
...
@@ -24,15 +25,20 @@ template <typename T>
struct
GaussianGenerator
{
struct
GaussianGenerator
{
T
mean_
,
std_
;
T
mean_
,
std_
;
unsigned
int
seed_
;
unsigned
int
seed_
;
unsigned
int
offset_
=
0
;
__host__
__device__
GaussianGenerator
(
T
mean
,
T
std
,
int
seed
)
__host__
__device__
GaussianGenerator
(
T
mean
,
T
std
,
int
seed
)
:
mean_
(
mean
),
std_
(
std
),
seed_
(
seed
)
{}
:
mean_
(
mean
),
std_
(
std
),
seed_
(
seed
)
{}
__host__
__device__
GaussianGenerator
(
T
mean
,
T
std
,
int
seed
,
int
offset
)
:
mean_
(
mean
),
std_
(
std
),
seed_
(
seed
),
offset_
(
offset
)
{}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed_
);
rng
.
seed
(
seed_
);
thrust
::
normal_distribution
<
T
>
dist
(
mean_
,
std_
);
thrust
::
normal_distribution
<
T
>
dist
(
mean_
,
std_
);
rng
.
discard
(
n
);
unsigned
int
new_n
=
n
+
offset_
;
rng
.
discard
(
new_n
);
return
dist
(
rng
);
return
dist
(
rng
);
}
}
};
};
...
@@ -43,9 +49,11 @@ class GPUGaussianRandomKernel : public framework::OpKernel<T> {
...
@@ -43,9 +49,11 @@ class GPUGaussianRandomKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
bool
seed_flag
=
false
;
if
(
seed
==
0
)
{
if
(
seed
==
0
)
{
std
::
random_device
rd
;
std
::
random_device
rd
;
seed
=
rd
();
seed
=
rd
();
seed_flag
=
true
;
}
}
T
mean
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"mean"
));
T
mean
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"mean"
));
T
std
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"std"
));
T
std
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"std"
));
...
@@ -56,9 +64,27 @@ class GPUGaussianRandomKernel : public framework::OpKernel<T> {
...
@@ -56,9 +64,27 @@ class GPUGaussianRandomKernel : public framework::OpKernel<T> {
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
size
=
tensor
->
numel
();
int64_t
size
=
tensor
->
numel
();
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
int
device_id
=
GaussianGenerator
<
T
>
(
mean
,
std
,
seed
));
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
(
gen_cuda
->
GetIsInitPy
()
&&
seed_flag
)
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
1
);
int
offset_step
=
100
;
// NOTE(xuefeng): Currently, we let offset step fixed to avoid
// unexpected results which may cause ut fail.
// we will fix this in future.
int
gen_offset
=
offset_step
*
seed_offset
.
second
;
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
GaussianGenerator
<
T
>
(
mean
,
std
,
seed_offset
.
first
,
gen_offset
));
}
else
{
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
GaussianGenerator
<
T
>
(
mean
,
std
,
seed
));
}
}
}
};
};
...
@@ -69,17 +95,37 @@ class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
...
@@ -69,17 +95,37 @@ class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
bool
seed_flag
=
false
;
if
(
seed
==
0
)
{
if
(
seed
==
0
)
{
std
::
random_device
rd
;
std
::
random_device
rd
;
seed
=
rd
();
seed
=
rd
();
seed_flag
=
true
;
}
}
T
mean
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"mean"
));
T
mean
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"mean"
));
T
std
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"std"
));
T
std
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"std"
));
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
int64_t
size
=
tensor
->
numel
();
int64_t
size
=
tensor
->
numel
();
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
int
device_id
=
GaussianGenerator
<
T
>
(
mean
,
std
,
seed
));
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
(
gen_cuda
->
GetIsInitPy
()
&&
seed_flag
)
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
1
);
int
offset_step
=
100
;
// NOTE(xuefeng): Currently, we let offset step fixed to avoid
// unexpected results which may cause ut fail.
// we will fix this in future.
int
gen_offset
=
offset_step
*
seed_offset
.
second
;
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
GaussianGenerator
<
T
>
(
mean
,
std
,
seed_offset
.
first
,
seed_offset
.
second
));
}
else
{
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
GaussianGenerator
<
T
>
(
mean
,
std
,
seed
));
}
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/randint_op.cu
浏览文件 @
7f3e6ca5
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
// limitations under the License.
// limitations under the License.
#include <thrust/random.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/uniform_random_op.h"
#include "paddle/fluid/operators/uniform_random_op.h"
...
@@ -49,15 +50,23 @@ class GPURandintKernel : public framework::OpKernel<T> {
...
@@ -49,15 +50,23 @@ class GPURandintKernel : public framework::OpKernel<T> {
int64_t
size
=
out
->
numel
();
int64_t
size
=
out
->
numel
();
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
/*
std::minstd_rand engine;
std::minstd_rand engine;
if (seed == 0) {
if (seed == 0) {
std::random_device rd;
std::random_device rd;
seed = rd();
seed = rd();
}
}
engine.seed(seed);
engine.seed(seed);
*/
std
::
uniform_int_distribution
<>
dist
(
context
.
Attr
<
int
>
(
"low"
),
std
::
uniform_int_distribution
<>
dist
(
context
.
Attr
<
int
>
(
"low"
),
context
.
Attr
<
int
>
(
"high"
)
-
1
);
context
.
Attr
<
int
>
(
"high"
)
-
1
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
data
[
i
]
=
dist
(
engine
);
auto
engine
=
framework
::
GetCPURandomEngine
(
seed
);
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
*
engine
);
}
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
// Copy tensor to out
// Copy tensor to out
...
...
paddle/fluid/operators/truncated_gaussian_random_op.cu
浏览文件 @
7f3e6ca5
...
@@ -15,6 +15,7 @@ limitations under the License. */
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include <thrust/random.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <thrust/transform.h>
#include <limits>
#include <limits>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
...
@@ -46,6 +47,37 @@ struct TruncatedNormal {
...
@@ -46,6 +47,37 @@ struct TruncatedNormal {
}
}
};
};
template
<
typename
T
>
struct
TruncatedNormalOffset
{
T
mean
,
std
;
T
a_normal_cdf
;
T
b_normal_cdf
;
unsigned
int
seed
;
T
numeric_min
;
int
offset_
;
__host__
__device__
TruncatedNormalOffset
(
T
mean
,
T
std
,
T
numeric_min
,
int
seed
,
int
offset
)
:
mean
(
mean
),
std
(
std
),
seed
(
seed
),
numeric_min
(
numeric_min
),
offset_
(
offset
)
{
a_normal_cdf
=
(
1.0
+
erff
(
-
2.0
/
sqrtf
(
2.0
)))
/
2.0
;
b_normal_cdf
=
(
1.0
+
erff
(
2.0
/
sqrtf
(
2.0
)))
/
2.0
;
}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed
);
thrust
::
uniform_real_distribution
<
T
>
dist
(
numeric_min
,
1
);
rng
.
discard
(
n
);
T
value
=
dist
(
rng
);
auto
p
=
a_normal_cdf
+
(
b_normal_cdf
-
a_normal_cdf
)
*
value
;
return
std
::
sqrt
(
2.0
)
*
erfinvf
(
2
*
p
-
1
)
*
std
+
mean
;
}
};
template
<
typename
T
>
template
<
typename
T
>
class
GPUTruncatedGaussianRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GPUTruncatedGaussianRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -54,14 +86,35 @@ class GPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
...
@@ -54,14 +86,35 @@ class GPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
bool
seed_flag
=
false
;
if
(
seed
==
0
)
{
if
(
seed
==
0
)
{
std
::
random_device
rd
;
std
::
random_device
rd
;
seed
=
rd
();
seed
=
rd
();
seed_flag
=
true
;
}
}
T
mean
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"mean"
));
T
mean
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"mean"
));
T
std
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"std"
));
T
std
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"std"
));
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
int64_t
size
=
tensor
->
numel
();
int64_t
size
=
tensor
->
numel
();
int
device_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
(
gen_cuda
->
GetIsInitPy
()
&&
seed_flag
)
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
1
);
int
offset_step
=
100
;
// NOTE(xuefeng): Currently, we let offset step fixed to avoid
// unexpected results which may cause ut fail.
// we will fix this in future.
int
gen_offset
=
offset_step
*
seed_offset
.
second
;
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
TruncatedNormalOffset
<
T
>
(
mean
,
std
,
std
::
numeric_limits
<
T
>::
min
(),
seed_offset
.
first
,
seed_offset
.
second
));
}
thrust
::
transform
(
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
thrust
::
device_ptr
<
T
>
(
data
),
...
...
paddle/fluid/operators/uniform_random_op.cu
浏览文件 @
7f3e6ca5
...
@@ -51,6 +51,39 @@ struct UniformGenerator {
...
@@ -51,6 +51,39 @@ struct UniformGenerator {
}
}
};
};
template
<
typename
T
>
struct
UniformGeneratorOffset
{
T
min_
,
max_
;
unsigned
int
seed_
;
T
diag_val_
;
unsigned
int
diag_num_
;
unsigned
int
diag_step_
;
int
offset_
;
__host__
__device__
UniformGeneratorOffset
(
T
min
,
T
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
T
diag_val
,
int
offset
)
:
min_
(
min
),
max_
(
max
),
seed_
(
seed
),
diag_num_
(
diag_num
),
diag_step_
(
diag_step
),
diag_val_
(
diag_val
),
offset_
(
offset
)
{}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed_
);
thrust
::
uniform_real_distribution
<
T
>
dist
(
min_
,
max_
);
rng
.
discard
(
n
+
offset_
);
T
out
=
dist
(
rng
);
unsigned
int
remainder
=
n
%
(
diag_step_
+
1
);
if
(
remainder
==
0
&&
diag_num_
>
n
/
(
diag_step_
+
1
))
{
out
=
diag_val_
;
}
return
out
;
}
};
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
// implement uniform random.
...
@@ -89,10 +122,11 @@ class GPUUniformRandomKernel : public framework::OpKernel<T> {
...
@@ -89,10 +122,11 @@ class GPUUniformRandomKernel : public framework::OpKernel<T> {
}
}
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
context
.
Attr
<
int
>
(
"seed"
));
bool
seed_flag
=
false
;
if
(
seed
==
0
)
{
if
(
seed
==
0
)
{
std
::
random_device
rd
;
std
::
random_device
rd
;
seed
=
rd
();
seed
=
rd
();
seed_flag
=
true
;
}
}
T
min
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"min"
));
T
min
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"min"
));
...
@@ -104,10 +138,27 @@ class GPUUniformRandomKernel : public framework::OpKernel<T> {
...
@@ -104,10 +138,27 @@ class GPUUniformRandomKernel : public framework::OpKernel<T> {
T
diag_val
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"diag_val"
));
T
diag_val
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"diag_val"
));
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
int64_t
size
=
tensor
->
numel
();
int64_t
size
=
tensor
->
numel
();
thrust
::
transform
(
int
device_id
=
index_sequence_begin
,
index_sequence_begin
+
size
,
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()).
GetDeviceId
();
thrust
::
device_ptr
<
T
>
(
data
),
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
UniformGenerator
<
T
>
(
min
,
max
,
seed
,
diag_num
,
diag_step
,
diag_val
));
if
(
gen_cuda
->
GetIsInitPy
()
&&
seed_flag
)
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
1
);
int
offset_step
=
100
;
// NOTE(xuefeng): Currently, we let offset step fixed to avoid
// unexpected results which may cause ut fail.
// we will fix this in future.
int
gen_offset
=
offset_step
*
seed_offset
.
second
;
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
UniformGeneratorOffset
<
T
>
(
min
,
max
,
seed_offset
.
first
,
diag_num
,
diag_step
,
diag_val
,
gen_offset
));
}
else
{
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
data
),
UniformGenerator
<
T
>
(
min
,
max
,
seed
,
diag_num
,
diag_step
,
diag_val
));
}
}
}
};
};
...
...
paddle/fluid/pybind/generator_py.cc
浏览文件 @
7f3e6ca5
...
@@ -59,6 +59,7 @@ void BindGenerator(py::module* m_ptr) {
...
@@ -59,6 +59,7 @@ void BindGenerator(py::module* m_ptr) {
.
def_property
(
"_is_init_py"
,
&
framework
::
Generator
::
GetIsInitPy
,
.
def_property
(
"_is_init_py"
,
&
framework
::
Generator
::
GetIsInitPy
,
&
framework
::
Generator
::
SetIsInitPy
);
&
framework
::
Generator
::
SetIsInitPy
);
m
.
def
(
"default_cpu_generator"
,
&
framework
::
DefaultCPUGenerator
);
m
.
def
(
"default_cpu_generator"
,
&
framework
::
DefaultCPUGenerator
);
}
// end Generator
m
.
def
(
"default_cuda_generator"
,
&
framework
::
GetDefaultCUDAGenerator
);
}
// end namespace pybind
}
}
// namespace pybind
}
// namespace paddle
}
// namespace paddle
python/paddle/__init__.py
浏览文件 @
7f3e6ca5
...
@@ -217,6 +217,8 @@ from .tensor.search import index_select #DEFINE_ALIAS
...
@@ -217,6 +217,8 @@ from .tensor.search import index_select #DEFINE_ALIAS
from
.tensor.search
import
nonzero
#DEFINE_ALIAS
from
.tensor.search
import
nonzero
#DEFINE_ALIAS
from
.tensor.search
import
sort
#DEFINE_ALIAS
from
.tensor.search
import
sort
#DEFINE_ALIAS
from
.framework.random
import
manual_seed
#DEFINE_ALIAS
from
.framework.random
import
manual_seed
#DEFINE_ALIAS
from
.framework.random
import
get_cuda_rng_state
#DEFINE_ALIAS
from
.framework.random
import
set_cuda_rng_state
#DEFINE_ALIAS
from
.framework
import
Variable
#DEFINE_ALIAS
from
.framework
import
Variable
#DEFINE_ALIAS
from
.framework
import
ParamAttr
#DEFINE_ALIAS
from
.framework
import
ParamAttr
#DEFINE_ALIAS
from
.framework
import
create_global_var
#DEFINE_ALIAS
from
.framework
import
create_global_var
#DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_cuda_random_seed.py
0 → 100644
浏览文件 @
7f3e6ca5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""
from
__future__
import
print_function
import
os
import
unittest
import
paddle.fluid.generator
as
generator
import
time
# temp for debug
import
paddle.fluid
as
fluid
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
class
TestGeneratorSeed
(
unittest
.
TestCase
):
"""
Test cases for cpu generator seed.
"""
def
test_gen_dropout_dygraph
(
self
):
gen
=
paddle
.
manual_seed
(
12343
)
fluid
.
enable_dygraph
()
gen
.
manual_seed
(
111111111
)
st
=
paddle
.
get_cuda_rng_state
()
x
=
fluid
.
layers
.
uniform_random
(
[
2
,
10
],
dtype
=
"float32"
,
min
=
0.0
,
max
=
1.0
)
x_again
=
fluid
.
layers
.
uniform_random
(
[
2
,
10
],
dtype
=
"float32"
,
min
=
0.0
,
max
=
1.0
)
x_third
=
fluid
.
layers
.
uniform_random
(
[
2
,
10
],
dtype
=
"float32"
,
min
=
0.0
,
max
=
1.0
)
print
(
"x: {}"
.
format
(
x
.
numpy
()))
print
(
"x_again: {}"
.
format
(
x_again
.
numpy
()))
x
=
x
+
x_again
+
x_third
y
=
fluid
.
layers
.
dropout
(
x
,
0.5
)
paddle
.
set_cuda_rng_state
(
st
)
x1
=
fluid
.
layers
.
uniform_random
(
[
2
,
10
],
dtype
=
"float32"
,
min
=
0.0
,
max
=
1.0
)
x1_again
=
fluid
.
layers
.
uniform_random
(
[
2
,
10
],
dtype
=
"float32"
,
min
=
0.0
,
max
=
1.0
)
x1_third
=
fluid
.
layers
.
uniform_random
(
[
2
,
10
],
dtype
=
"float32"
,
min
=
0.0
,
max
=
1.0
)
x1
=
x1
+
x1_again
+
x1_third
y1
=
fluid
.
layers
.
dropout
(
x1
,
0.5
)
y_np
=
y
.
numpy
()
y1_np
=
y1
.
numpy
()
if
core
.
is_compiled_with_cuda
():
print
(
">>>>>>> dropout dygraph >>>>>>>"
)
self
.
assertTrue
(
np
.
allclose
(
y_np
,
y1_np
))
def
test_generator_gaussian_random_dygraph
(
self
):
"""Test Generator seed."""
fluid
.
enable_dygraph
()
paddle
.
manual_seed
(
12312321111
)
x
=
fluid
.
layers
.
gaussian_random
([
120
],
dtype
=
"float32"
)
st1
=
paddle
.
get_cuda_rng_state
()
x1
=
fluid
.
layers
.
gaussian_random
([
120
],
dtype
=
"float32"
)
paddle
.
set_cuda_rng_state
(
st1
)
x2
=
fluid
.
layers
.
gaussian_random
([
120
],
dtype
=
"float32"
)
paddle
.
manual_seed
(
12312321111
)
x3
=
fluid
.
layers
.
gaussian_random
([
120
],
dtype
=
"float32"
)
x_np
=
x
.
numpy
()
x1_np
=
x1
.
numpy
()
x2_np
=
x2
.
numpy
()
x3_np
=
x3
.
numpy
()
if
core
.
is_compiled_with_cuda
():
print
(
">>>>>>> gaussian random dygraph >>>>>>>"
)
self
.
assertTrue
(
np
.
allclose
(
x1_np
,
x2_np
))
self
.
assertTrue
(
np
.
allclose
(
x_np
,
x3_np
))
def
test_generator_randint_dygraph
(
self
):
"""Test Generator seed."""
fluid
.
enable_dygraph
()
gen
=
paddle
.
manual_seed
(
12312321111
)
x
=
paddle
.
randint
(
low
=
10
,
shape
=
[
10
],
dtype
=
"int32"
)
st1
=
gen
.
get_state
()
x1
=
paddle
.
randint
(
low
=
10
,
shape
=
[
10
],
dtype
=
"int32"
)
gen
.
set_state
(
st1
)
x2
=
paddle
.
randint
(
low
=
10
,
shape
=
[
10
],
dtype
=
"int32"
)
paddle
.
manual_seed
(
12312321111
)
x3
=
paddle
.
randint
(
low
=
10
,
shape
=
[
10
],
dtype
=
"int32"
)
x_np
=
x
.
numpy
()
x1_np
=
x1
.
numpy
()
x2_np
=
x2
.
numpy
()
x3_np
=
x3
.
numpy
()
if
core
.
is_compiled_with_cuda
():
print
(
">>>>>>> randint dygraph >>>>>>>"
)
self
.
assertTrue
(
np
.
allclose
(
x1_np
,
x2_np
))
self
.
assertTrue
(
np
.
allclose
(
x_np
,
x3_np
))
def
test_gen_TruncatedNormal_initializer
(
self
):
fluid
.
disable_dygraph
()
gen
=
paddle
.
manual_seed
(
123123143
)
cur_state
=
paddle
.
get_cuda_rng_state
()
startup_program
=
fluid
.
Program
()
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
# example 1:
# attr shape is a list which doesn't contain tensor Variable.
x
=
fluid
.
layers
.
uniform_random
(
shape
=
[
2
,
10
])
result_1
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
10
,
param_attr
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
2.0
))
result_2
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
10
,
param_attr
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
2.0
))
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
startup_program
)
out1
=
exe
.
run
(
train_program
,
feed
=
{},
fetch_list
=
[
result_1
,
result_2
])
paddle
.
manual_seed
(
123123143
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
exe
.
run
(
startup_program
)
out2
=
exe
.
run
(
train_program
,
feed
=
{},
fetch_list
=
[
result_1
,
result_2
])
out1_res1
=
np
.
array
(
out1
[
0
])
out1_res2
=
np
.
array
(
out1
[
1
])
out2_res1
=
np
.
array
(
out2
[
0
])
out2_res2
=
np
.
array
(
out2
[
1
])
if
core
.
is_compiled_with_cuda
():
print
(
">>>>>>> truncated normal static >>>>>>>"
)
self
.
assertTrue
(
np
.
allclose
(
out1_res1
,
out2_res1
))
self
.
assertTrue
(
np
.
allclose
(
out1_res2
,
out2_res2
))
self
.
assertTrue
(
not
np
.
allclose
(
out1_res2
,
out1_res1
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/framework/random.py
浏览文件 @
7f3e6ca5
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
__all__
=
[
'manual_seed'
]
__all__
=
[
'manual_seed'
,
'get_cuda_rng_state'
,
'set_cuda_rng_state'
]
def
manual_seed
(
seed
):
def
manual_seed
(
seed
):
...
@@ -42,10 +42,69 @@ def manual_seed(seed):
...
@@ -42,10 +42,69 @@ def manual_seed(seed):
seed
=
int
(
seed
)
seed
=
int
(
seed
)
if
core
.
is_compiled_with_cuda
():
for
i
in
range
(
core
.
get_cuda_device_count
()):
core
.
default_cuda_generator
(
i
).
_is_init_py
=
True
core
.
default_cuda_generator
(
i
).
manual_seed
(
seed
)
core
.
default_cpu_generator
().
_is_init_py
=
True
core
.
default_cpu_generator
().
_is_init_py
=
True
return
core
.
default_cpu_generator
().
manual_seed
(
seed
)
return
core
.
default_cpu_generator
().
manual_seed
(
seed
)
def
get_cuda_rng_state
():
"""
Get random state of cuda generators.
Args:
None
Returns:
GeneratorState: object.
Examples:
.. code-block:: python
import paddle
sts = paddle.get_cuda_rng_state()
"""
state_list
=
[]
if
core
.
is_compiled_with_cuda
():
for
i
in
range
(
core
.
get_cuda_device_count
()):
state_list
.
append
(
core
.
default_cuda_generator
(
i
).
get_state
())
return
state_list
def
set_cuda_rng_state
(
state_list
):
"""
Sets generator state for all cuda generators
Args:
state_list(list): The cuda states to set back to cuda generators. state_list is obtained from get_cuda_rng_state().
Returns:
None
Examples:
.. code-block:: python
import paddle
sts = paddle.get_cuda_rng_state()
paddle.set_cuda_rng_state(sts)
"""
if
core
.
is_compiled_with_cuda
():
if
not
len
(
state_list
)
==
core
.
get_cuda_device_count
():
raise
ValueError
(
"Length of cuda state list shoule be equal to the cuda device count"
)
for
i
in
range
(
core
.
get_cuda_device_count
()):
core
.
default_cuda_generator
(
i
).
set_state
(
state_list
[
i
])
def
_manual_program_seed
(
seed
):
def
_manual_program_seed
(
seed
):
"""
"""
Sets global seed for generating random numbers.
Sets global seed for generating random numbers.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录