Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7e1155ed
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7e1155ed
编写于
3月 24, 2022
作者:
N
niuliling123
提交者:
GitHub
3月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add is_mean param for mean op (#40757)
上级
521cded2
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
91 addition
and
42 deletion
+91
-42
paddle/fluid/operators/mean_op.cu
paddle/fluid/operators/mean_op.cu
+4
-3
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
+2
-2
paddle/phi/kernels/funcs/reduce_function.h
paddle/phi/kernels/funcs/reduce_function.h
+73
-32
paddle/phi/kernels/gpu/reduce.h
paddle/phi/kernels/gpu/reduce.h
+10
-3
paddle/phi/kernels/gpu/reduce_kernel.cu
paddle/phi/kernels/gpu/reduce_kernel.cu
+2
-2
未找到文件。
paddle/fluid/operators/mean_op.cu
浏览文件 @
7e1155ed
...
@@ -65,9 +65,10 @@ class MeanCUDAKernel : public framework::OpKernel<T> {
...
@@ -65,9 +65,10 @@ class MeanCUDAKernel : public framework::OpKernel<T> {
for
(
decltype
(
rank
)
i
=
0
;
i
<
rank
;
++
i
)
{
for
(
decltype
(
rank
)
i
=
0
;
i
<
rank
;
++
i
)
{
reduce_dims
.
push_back
(
i
);
reduce_dims
.
push_back
(
i
);
}
}
TensorReduceImpl
<
T
,
T
,
kernel_primitives
::
AddFunctor
,
Div
>
(
TensorReduceImpl
<
T
,
T
,
kernel_primitives
::
AddFunctor
,
context
.
cuda_device_context
(),
*
input
,
output
,
Div
(
numel
),
reduce_dims
,
kps
::
IdentityFunctor
<
T
>>
(
stream
);
context
.
cuda_device_context
(),
*
input
,
output
,
kps
::
IdentityFunctor
<
T
>
(),
reduce_dims
,
stream
,
true
);
}
}
};
};
...
...
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
浏览文件 @
7e1155ed
...
@@ -33,12 +33,12 @@ void TensorReduceImpl(const platform::CUDADeviceContext& dev_ctx,
...
@@ -33,12 +33,12 @@ void TensorReduceImpl(const platform::CUDADeviceContext& dev_ctx,
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
const
TransformOp
&
transform
,
const
TransformOp
&
transform
,
const
std
::
vector
<
int
>&
origin_reduce_dims
,
const
std
::
vector
<
int
>&
origin_reduce_dims
,
gpuStream_t
stream
)
{
gpuStream_t
stream
,
bool
is_mean
=
false
)
{
y
->
mutable_data
<
Ty
>
(
x
.
place
());
y
->
mutable_data
<
Ty
>
(
x
.
place
());
phi
::
funcs
::
ReduceKernel
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
phi
::
funcs
::
ReduceKernel
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
static_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
x
,
y
,
transform
,
static_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
x
,
y
,
transform
,
origin_reduce_dims
);
origin_reduce_dims
,
is_mean
);
}
}
}
// namespace operators
}
// namespace operators
...
...
paddle/phi/kernels/funcs/reduce_function.h
浏览文件 @
7e1155ed
...
@@ -453,25 +453,20 @@ struct ReduceConfig {
...
@@ -453,25 +453,20 @@ struct ReduceConfig {
void
SetReduceType
()
{
void
SetReduceType
()
{
int
rank
=
x_dim
.
size
();
int
rank
=
x_dim
.
size
();
int
reduce_rank
=
reduce_dim
.
size
();
int
reduce_rank
=
reduce_dim
.
size
();
bool
is_last_dim
=
(
rank
==
2
)
&&
(
reduce_rank
==
1
)
&&
(
reduce_dim
[
0
]
==
1
);
if
(
rank
==
reduce_rank
||
is_last_dim
)
{
#ifdef PADDLE_WITH_XPU_KP
#ifdef PADDLE_WITH_XPU_KP
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceAny
)
;
bool
not_higher
=
x_dim
[
0
]
>
1
;
#else
#else
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceLastDim
);
int
device_id
=
paddle
::
platform
::
GetCurrentDeviceId
();
int
max_grid_z
=
phi
::
backends
::
gpu
::
GetGpuMaxGridDimSize
(
device_id
)[
2
];
bool
not_higher
=
x_dim
[
0
]
>=
max_grid_z
;
#endif
#endif
if
(
reduce_last_dim
&&
(
reduce_rank
==
1
))
{
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceLastDim
);
}
else
if
(
reduce_rank
==
1
)
{
}
else
if
(
reduce_rank
==
1
)
{
// ReduceFirstDim and reduceSecondDim
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceHigherDim
);
#ifdef PADDLE_WITH_XPU_KP
if
(
rank
==
3
&&
not_higher
)
{
if
(
reduce_dim
[
0
]
==
0
)
{
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceHigherDim
);
}
else
{
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceAny
);
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceAny
);
}
}
#else
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceHigherDim
);
#endif
}
else
{
}
else
{
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceAny
);
reduce_type
=
static_cast
<
int
>
(
ReduceType
::
kReduceAny
);
}
}
...
@@ -648,7 +643,8 @@ __global__ void ReduceAnyKernel(const Tx* x,
...
@@ -648,7 +643,8 @@ __global__ void ReduceAnyKernel(const Tx* x,
bool
reduce_last_dim
,
bool
reduce_last_dim
,
const
Calculator
reduce_index_calculator
,
const
Calculator
reduce_index_calculator
,
const
Calculator
left_index_calculator
,
const
Calculator
left_index_calculator
,
const
kps
::
DimConfig
dim
)
{
const
kps
::
DimConfig
dim
,
bool
is_mean
)
{
int
input_idx
,
left_idx
,
stride
;
int
input_idx
,
left_idx
,
stride
;
int
block_size
=
0
;
int
block_size
=
0
;
bool
need_store
=
true
;
bool
need_store
=
true
;
...
@@ -752,7 +748,9 @@ __global__ void ReduceAnyKernel(const Tx* x,
...
@@ -752,7 +748,9 @@ __global__ void ReduceAnyKernel(const Tx* x,
kps
::
Reduce
<
MPType
,
1
,
1
,
1
,
ReduceOp
,
kps
::
details
::
kGlobalMode
>
(
kps
::
Reduce
<
MPType
,
1
,
1
,
1
,
ReduceOp
,
kps
::
details
::
kGlobalMode
>
(
&
reduce_var
,
&
reduce_var
,
reducer
,
reduce_last_dim
);
&
reduce_var
,
&
reduce_var
,
reducer
,
reduce_last_dim
);
if
(
is_mean
)
{
reduce_var
=
reduce_var
/
static_cast
<
MPType
>
(
reduce_num
);
}
Ty
result
=
static_cast
<
Ty
>
(
reduce_var
);
Ty
result
=
static_cast
<
Ty
>
(
reduce_var
);
kps
::
details
::
WriteData
<
Ty
>
(
kps
::
details
::
WriteData
<
Ty
>
(
y
+
store_offset
+
i
,
&
result
,
static_cast
<
int
>
(
need_store
));
y
+
store_offset
+
i
,
&
result
,
static_cast
<
int
>
(
need_store
));
...
@@ -772,7 +770,9 @@ __global__ void ReduceHigherDimKernel(const Tx* x,
...
@@ -772,7 +770,9 @@ __global__ void ReduceHigherDimKernel(const Tx* x,
int
reduce_num
,
int
reduce_num
,
int
left_num
,
int
left_num
,
int
blocking_size
,
int
blocking_size
,
const
kps
::
DimConfig
dim
)
{
const
kps
::
DimConfig
dim
,
int
mean_div
,
bool
is_mean
)
{
// when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
// when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
// function will be used
// function will be used
auto
block
=
ReduceIndexMapping
<
false
>
(
dim
);
auto
block
=
ReduceIndexMapping
<
false
>
(
dim
);
...
@@ -806,6 +806,9 @@ __global__ void ReduceHigherDimKernel(const Tx* x,
...
@@ -806,6 +806,9 @@ __global__ void ReduceHigherDimKernel(const Tx* x,
kps
::
details
::
ReduceMode
::
kLocalMode
>
(
kps
::
details
::
ReduceMode
::
kLocalMode
>
(
&
reduce_var
,
&
reduce_compute
,
reducer
,
false
);
&
reduce_var
,
&
reduce_compute
,
reducer
,
false
);
}
}
if
(
is_mean
)
{
reduce_var
=
reduce_var
/
static_cast
<
MPType
>
(
mean_div
);
}
Ty
result
=
static_cast
<
Ty
>
(
reduce_var
);
Ty
result
=
static_cast
<
Ty
>
(
reduce_var
);
kps
::
WriteData
<
Ty
,
1
,
1
,
1
,
false
>
(
kps
::
WriteData
<
Ty
,
1
,
1
,
1
,
false
>
(
y
+
store_offset
+
idx
,
&
result
,
block
.
BlockDimX
());
y
+
store_offset
+
idx
,
&
result
,
block
.
BlockDimX
());
...
@@ -831,6 +834,10 @@ __global__ void ReduceHigherDimKernel(const Tx* x,
...
@@ -831,6 +834,10 @@ __global__ void ReduceHigherDimKernel(const Tx* x,
kps
::
details
::
ReduceMode
::
kLocalMode
>
(
kps
::
details
::
ReduceMode
::
kLocalMode
>
(
&
reduce_var
,
&
reduce_compute
,
reducer
,
false
);
&
reduce_var
,
&
reduce_compute
,
reducer
,
false
);
}
}
if
(
is_mean
)
{
reduce_var
=
reduce_var
/
static_cast
<
MPType
>
(
mean_div
);
}
Ty
result
=
static_cast
<
Ty
>
(
reduce_var
);
Ty
result
=
static_cast
<
Ty
>
(
reduce_var
);
kps
::
WriteData
<
Ty
,
1
,
1
,
1
,
true
>
(
kps
::
WriteData
<
Ty
,
1
,
1
,
1
,
true
>
(
y
+
store_offset
+
idx
,
&
result
,
dim
.
rem_x
);
y
+
store_offset
+
idx
,
&
result
,
dim
.
rem_x
);
...
@@ -848,7 +855,8 @@ static void LaunchReduceKernel(const Tx* x_data,
...
@@ -848,7 +855,8 @@ static void LaunchReduceKernel(const Tx* x_data,
const
TransformOp
&
transform
,
const
TransformOp
&
transform
,
MPType
init
,
MPType
init
,
KPStream
stream
,
KPStream
stream
,
ReduceConfig
<
Ty
>
config
)
{
ReduceConfig
<
Ty
>
config
,
bool
is_mean
=
false
)
{
if
(
config
.
reduce_type
==
kReduceLastDim
)
{
if
(
config
.
reduce_type
==
kReduceLastDim
)
{
int
stride_reduce
=
1
;
int
stride_reduce
=
1
;
int
stride_left
=
config
.
reduce_num
;
int
stride_left
=
config
.
reduce_num
;
...
@@ -887,7 +895,8 @@ static void LaunchReduceKernel(const Tx* x_data,
...
@@ -887,7 +895,8 @@ static void LaunchReduceKernel(const Tx* x_data,
config
.
reduce_last_dim
,
config
.
reduce_last_dim
,
reduce_index_calculator
,
reduce_index_calculator
,
left_index_calculator
,
left_index_calculator
,
dim
);
dim
,
is_mean
&&
(
!
config
.
should_reduce_again
));
}
else
{
}
else
{
int
reduce_rank
=
config
.
reduce_strides
.
size
();
int
reduce_rank
=
config
.
reduce_strides
.
size
();
...
@@ -930,7 +939,8 @@ static void LaunchReduceKernel(const Tx* x_data,
...
@@ -930,7 +939,8 @@ static void LaunchReduceKernel(const Tx* x_data,
config
.
reduce_last_dim
,
config
.
reduce_last_dim
,
reduce_index_calculator
,
reduce_index_calculator
,
left_index_calculator
,
left_index_calculator
,
dim
);
dim
,
is_mean
&&
(
!
config
.
should_reduce_again
));
}
}
if
(
config
.
should_reduce_again
)
{
if
(
config
.
should_reduce_again
)
{
...
@@ -950,15 +960,18 @@ static void LaunchReduceKernel(const Tx* x_data,
...
@@ -950,15 +960,18 @@ static void LaunchReduceKernel(const Tx* x_data,
kps
::
DimConfig
(
grid
.
x
,
grid
.
y
,
grid
.
z
,
block
.
x
,
config
.
grid
.
y
,
0
);
kps
::
DimConfig
(
grid
.
x
,
grid
.
y
,
grid
.
z
,
block
.
x
,
config
.
grid
.
y
,
0
);
dim
.
SetRem
(
config
.
left_num
%
block
.
x
,
0
,
0
);
dim
.
SetRem
(
config
.
left_num
%
block
.
x
,
0
,
0
);
#ifdef PADDLE_WITH_XPU_KP
#ifdef PADDLE_WITH_XPU_KP
grid
=
8
;
int
grid_size
=
8
;
block
=
64
;
int
block_size
=
64
;
#else
auto
grid_size
=
grid
;
auto
block_size
=
block
;
#endif
#endif
ReduceHigherDimKernel
<
ReduceHigherDimKernel
<
Ty
,
Ty
,
Ty
,
Ty
,
MPType
,
MPType
,
ReduceOp
,
ReduceOp
,
kps
::
IdentityFunctor
<
Ty
,
MPType
>><<<
grid
,
block
,
0
,
stream
>>>
(
kps
::
IdentityFunctor
<
Ty
,
MPType
>><<<
grid
_size
,
block_size
,
0
,
stream
>>>
(
config
.
output_data
,
config
.
output_data
,
y_data
,
y_data
,
reducer
,
reducer
,
...
@@ -967,7 +980,9 @@ static void LaunchReduceKernel(const Tx* x_data,
...
@@ -967,7 +980,9 @@ static void LaunchReduceKernel(const Tx* x_data,
config
.
grid
.
y
,
config
.
grid
.
y
,
config
.
left_num
,
config
.
left_num
,
config
.
grid
.
y
,
config
.
grid
.
y
,
dim
);
dim
,
config
.
reduce_num
,
is_mean
);
}
}
}
}
...
@@ -1034,7 +1049,8 @@ void ReduceKernel(const KPDevice& dev_ctx,
...
@@ -1034,7 +1049,8 @@ void ReduceKernel(const KPDevice& dev_ctx,
const
phi
::
DenseTensor
&
x
,
const
phi
::
DenseTensor
&
x
,
phi
::
DenseTensor
*
y
,
phi
::
DenseTensor
*
y
,
const
TransformOp
&
transform
,
const
TransformOp
&
transform
,
const
std
::
vector
<
int
>&
origin_reduce_dims
)
{
const
std
::
vector
<
int
>&
origin_reduce_dims
,
bool
is_mean
=
false
)
{
#ifdef PADDLE_WITH_XPU_KP
#ifdef PADDLE_WITH_XPU_KP
auto
stream
=
dev_ctx
.
x_context
()
->
xpu_stream
;
auto
stream
=
dev_ctx
.
x_context
()
->
xpu_stream
;
#else
#else
...
@@ -1069,8 +1085,18 @@ void ReduceKernel(const KPDevice& dev_ctx,
...
@@ -1069,8 +1085,18 @@ void ReduceKernel(const KPDevice& dev_ctx,
bool
use_cub_reduce
=
config
.
reduce_num
==
numel
&&
!
kIsTxFP16
;
bool
use_cub_reduce
=
config
.
reduce_num
==
numel
&&
!
kIsTxFP16
;
#ifndef PADDLE_WITH_XPU_KP
#ifndef PADDLE_WITH_XPU_KP
if
(
use_cub_reduce
)
{
if
(
use_cub_reduce
)
{
CubTensorReduceImpl
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
if
(
is_mean
)
{
x_data
,
y_data
,
transform
,
config
.
reduce_num
,
dev_ctx
,
stream
);
using
Div
=
kps
::
DivideFunctor
<
Tx
>
;
CubTensorReduceImpl
<
Tx
,
Ty
,
ReduceOp
,
Div
>
(
x_data
,
y_data
,
Div
(
config
.
reduce_num
),
config
.
reduce_num
,
dev_ctx
,
stream
);
}
else
{
CubTensorReduceImpl
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
x_data
,
y_data
,
transform
,
config
.
reduce_num
,
dev_ctx
,
stream
);
}
return
;
return
;
}
}
#endif
#endif
...
@@ -1115,7 +1141,9 @@ void ReduceKernel(const KPDevice& dev_ctx,
...
@@ -1115,7 +1141,9 @@ void ReduceKernel(const KPDevice& dev_ctx,
config
.
reduce_num
,
config
.
reduce_num
,
config
.
left_num
,
config
.
left_num
,
config
.
blocking_size
,
config
.
blocking_size
,
dim
);
dim
,
config
.
reduce_num
,
is_mean
&&
(
!
config
.
should_reduce_again
));
if
(
config
.
should_reduce_again
)
{
if
(
config
.
should_reduce_again
)
{
dim3
block
=
dim3
(
config
.
block
.
x
,
1
,
1
);
dim3
block
=
dim3
(
config
.
block
.
x
,
1
,
1
);
...
@@ -1125,15 +1153,19 @@ void ReduceKernel(const KPDevice& dev_ctx,
...
@@ -1125,15 +1153,19 @@ void ReduceKernel(const KPDevice& dev_ctx,
dim2
.
SetRem
(
config
.
left_num
%
config
.
block
.
x
,
0
,
0
);
dim2
.
SetRem
(
config
.
left_num
%
config
.
block
.
x
,
0
,
0
);
#ifdef PADDLE_WITH_XPU_KP
#ifdef PADDLE_WITH_XPU_KP
grid
=
8
;
int
grid_size
=
8
;
block
=
64
;
int
block_size
=
64
;
#else
auto
grid_size
=
grid
;
auto
block_size
=
block
;
#endif
#endif
ReduceHigherDimKernel
<
ReduceHigherDimKernel
<
Ty
,
Ty
,
Ty
,
Ty
,
MPType
,
MPType
,
ReduceOp
<
MPType
>
,
ReduceOp
<
MPType
>
,
kps
::
IdentityFunctor
<
Ty
,
MPType
>><<<
grid
,
block
,
0
,
stream
>>>
(
kps
::
IdentityFunctor
<
Ty
,
MPType
>><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
config
.
output_data
,
config
.
output_data
,
y_data
,
y_data
,
reducer
,
reducer
,
...
@@ -1142,7 +1174,9 @@ void ReduceKernel(const KPDevice& dev_ctx,
...
@@ -1142,7 +1174,9 @@ void ReduceKernel(const KPDevice& dev_ctx,
config
.
grid
.
y
,
config
.
grid
.
y
,
config
.
left_num
,
config
.
left_num
,
config
.
grid
.
y
,
config
.
grid
.
y
,
dim2
);
dim2
,
config
.
reduce_num
,
is_mean
);
}
}
return
;
return
;
}
}
...
@@ -1151,7 +1185,14 @@ void ReduceKernel(const KPDevice& dev_ctx,
...
@@ -1151,7 +1185,14 @@ void ReduceKernel(const KPDevice& dev_ctx,
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
// function will be used
LaunchReduceKernel
<
Tx
,
Ty
,
MPType
,
ReduceOp
<
MPType
>
,
TransformOp
>
(
LaunchReduceKernel
<
Tx
,
Ty
,
MPType
,
ReduceOp
<
MPType
>
,
TransformOp
>
(
x_data
,
y_data
,
reducer
,
transform
,
reducer
.
initial
(),
stream
,
config
);
x_data
,
y_data
,
reducer
,
transform
,
reducer
.
initial
(),
stream
,
config
,
is_mean
);
}
}
}
// namespace funcs
}
// namespace funcs
...
...
paddle/phi/kernels/gpu/reduce.h
浏览文件 @
7e1155ed
...
@@ -30,7 +30,8 @@ void Reduce(const KPDevice& dev_ctx,
...
@@ -30,7 +30,8 @@ void Reduce(const KPDevice& dev_ctx,
const
std
::
vector
<
int64_t
>&
dims
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
bool
keep_dim
,
DataType
out_dtype
,
DataType
out_dtype
,
DenseTensor
*
out
)
{
DenseTensor
*
out
,
bool
is_mean
=
false
)
{
std
::
vector
<
int
>
reduce_dims
=
std
::
vector
<
int
>
reduce_dims
=
phi
::
funcs
::
details
::
GetReduceDim
(
dims
,
x
.
dims
().
size
(),
reduce_all
);
phi
::
funcs
::
details
::
GetReduceDim
(
dims
,
x
.
dims
().
size
(),
reduce_all
);
...
@@ -57,12 +58,18 @@ void Reduce(const KPDevice& dev_ctx,
...
@@ -57,12 +58,18 @@ void Reduce(const KPDevice& dev_ctx,
tmp_tensor
,
tmp_tensor
,
out
,
out
,
TransformOp
<
data_t
,
MPType
>
(
reduce_num
),
TransformOp
<
data_t
,
MPType
>
(
reduce_num
),
reduce_dims
);
reduce_dims
,
is_mean
);
}));
}));
}
else
{
}
else
{
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
using
MPType
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
ReduceOp
,
TransformOp
<
T
,
MPType
>>
(
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
ReduceOp
,
TransformOp
<
T
,
MPType
>>
(
dev_ctx
,
x
,
out
,
TransformOp
<
T
,
MPType
>
(
reduce_num
),
reduce_dims
);
dev_ctx
,
x
,
out
,
TransformOp
<
T
,
MPType
>
(
reduce_num
),
reduce_dims
,
is_mean
);
}
}
}
}
}
// namespace phi
}
// namespace phi
...
...
paddle/phi/kernels/gpu/reduce_kernel.cu
浏览文件 @
7e1155ed
...
@@ -27,8 +27,8 @@ void MeanRawKernel(const Context& dev_ctx,
...
@@ -27,8 +27,8 @@ void MeanRawKernel(const Context& dev_ctx,
bool
reduce_all
,
bool
reduce_all
,
DenseTensor
*
out
)
{
DenseTensor
*
out
)
{
auto
out_dtype
=
x
.
dtype
();
auto
out_dtype
=
x
.
dtype
();
phi
::
Reduce
<
T
,
kps
::
AddFunctor
,
kps
::
Divide
Functor
>
(
phi
::
Reduce
<
T
,
kps
::
AddFunctor
,
kps
::
Identity
Functor
>
(
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
);
dev_ctx
,
x
,
reduce_all
,
dims
,
keep_dim
,
out_dtype
,
out
,
true
);
}
}
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录