提交 7dbc77ba 编写于 作者: L Luo Tao

rename regression_cost to mse_cost

上级 56fcf9c1
...@@ -14,7 +14,7 @@ def main(): ...@@ -14,7 +14,7 @@ def main():
act=paddle.activation.Linear(), act=paddle.activation.Linear(),
bias_attr=paddle.attr.Param(name='b')) bias_attr=paddle.attr.Param(name='b'))
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.regression_cost(input=y_predict, label=y) cost = paddle.layer.mse_cost(input=y_predict, label=y)
# create parameters # create parameters
parameters = paddle.parameters.create(cost) parameters = paddle.parameters.create(cost)
......
...@@ -34,5 +34,5 @@ y_predict = fc_layer( ...@@ -34,5 +34,5 @@ y_predict = fc_layer(
size=1, size=1,
act=LinearActivation(), act=LinearActivation(),
bias_attr=ParamAttr(name='b')) bias_attr=ParamAttr(name='b'))
cost = regression_cost(input=y_predict, label=y) cost = mse_cost(input=y_predict, label=y)
outputs(cost) outputs(cost)
...@@ -61,7 +61,7 @@ def main(): ...@@ -61,7 +61,7 @@ def main():
inference = paddle.layer.cos_sim( inference = paddle.layer.cos_sim(
a=usr_combined_features, b=mov_combined_features, size=1, scale=5) a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
cost = paddle.layer.regression_cost( cost = paddle.layer.mse_cost(
input=inference, input=inference,
label=paddle.layer.data( label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1))) name='score', type=paddle.data_type.dense_vector(1)))
......
...@@ -86,10 +86,7 @@ movie_feature = construct_feature("movie") ...@@ -86,10 +86,7 @@ movie_feature = construct_feature("movie")
user_feature = construct_feature("user") user_feature = construct_feature("user")
similarity = cos_sim(a=movie_feature, b=user_feature) similarity = cos_sim(a=movie_feature, b=user_feature)
if not is_predict: if not is_predict:
outputs( outputs(mse_cost(input=similarity, label=data_layer('rating', size=1)))
regression_cost(
input=similarity, label=data_layer(
'rating', size=1)))
define_py_data_sources2( define_py_data_sources2(
'data/train.list', 'data/train.list',
......
...@@ -432,6 +432,12 @@ multi_binary_label_cross_entropy ...@@ -432,6 +432,12 @@ multi_binary_label_cross_entropy
:members: multi_binary_label_cross_entropy :members: multi_binary_label_cross_entropy
:noindex: :noindex:
mse_cost
---------
.. automodule:: paddle.trainer_config_helpers.layers
:members: mse_cost
:noindex:
huber_cost huber_cost
---------- ----------
.. automodule:: paddle.trainer_config_helpers.layers .. automodule:: paddle.trainer_config_helpers.layers
...@@ -450,6 +456,12 @@ rank_cost ...@@ -450,6 +456,12 @@ rank_cost
:members: rank_cost :members: rank_cost
:noindex: :noindex:
sum_cost
---------
.. automodule:: paddle.trainer_config_helpers.layers
:members: sum_cost
:noindex:
crf_layer crf_layer
----------------- -----------------
.. automodule:: paddle.trainer_config_helpers.layers .. automodule:: paddle.trainer_config_helpers.layers
...@@ -486,12 +498,6 @@ hsigmoid ...@@ -486,12 +498,6 @@ hsigmoid
:members: hsigmoid :members: hsigmoid
:noindex: :noindex:
sum_cost
---------
.. automodule:: paddle.trainer_config_helpers.layers
:members: sum_cost
:noindex:
Check Layer Check Layer
============ ============
......
...@@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 ...@@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
# 线性计算网络层: ȳ = wx + b # 线性计算网络层: ȳ = wx + b
ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b')) ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
# 计算误差函数,即 ȳ 和真实 y 之间的距离 # 计算误差函数,即 ȳ 和真实 y 之间的距离
cost = regression_cost(input= ȳ, label=y) cost = mse_cost(input= ȳ, label=y)
outputs(cost) outputs(cost)
...@@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 ...@@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
- **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。 - **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。
- **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。 - **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。
- **回归误差代价层**:回归误差代价层 `regression_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。 - **回归误差代价层**:回归误差代价层 `mse_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令: 定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令:
......
...@@ -49,7 +49,7 @@ To recover this relationship between ``X`` and ``Y``, we use a neural network wi ...@@ -49,7 +49,7 @@ To recover this relationship between ``X`` and ``Y``, we use a neural network wi
x = data_layer(name='x', size=1) x = data_layer(name='x', size=1)
y = data_layer(name='y', size=1) y = data_layer(name='y', size=1)
y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b')) y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
cost = regression_cost(input=y_predict, label=y) cost = mse_cost(input=y_predict, label=y)
outputs(cost) outputs(cost)
Some of the most fundamental usages of PaddlePaddle are demonstrated: Some of the most fundamental usages of PaddlePaddle are demonstrated:
......
...@@ -213,7 +213,7 @@ I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions ...@@ -213,7 +213,7 @@ I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done. I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done.
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config. [WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating] [INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__regression_cost_0__] [INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__mse_cost_0__]
I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
......
...@@ -52,7 +52,7 @@ __all__ = [ ...@@ -52,7 +52,7 @@ __all__ = [
"cos_sim", "cos_sim",
"hsigmoid", "hsigmoid",
"conv_projection", "conv_projection",
"regression_cost", "mse_cost",
'classification_cost', 'classification_cost',
"LayerOutput", "LayerOutput",
'img_conv_layer', 'img_conv_layer',
...@@ -3572,11 +3572,14 @@ def __cost_input__(input, label, weight=None): ...@@ -3572,11 +3572,14 @@ def __cost_input__(input, label, weight=None):
@wrap_name_default() @wrap_name_default()
@layer_support() @layer_support()
def regression_cost(input, label, weight=None, name=None, layer_attr=None): def mse_cost(input, label, weight=None, name=None, layer_attr=None):
""" """
Regression Layer. mean squared error cost:
.. math::
$\frac{1}{N}\sum_{i=1}^N(t _i- y_i)^2$
TODO(yuyang18): Complete this method.
:param name: layer name. :param name: layer name.
:type name: basestring :type name: basestring
......
...@@ -45,7 +45,7 @@ layers { ...@@ -45,7 +45,7 @@ layers {
coeff: 1.0 coeff: 1.0
} }
layers { layers {
name: "__regression_cost_0__" name: "__mse_cost_0__"
type: "square_error" type: "square_error"
size: 1 size: 1
active_type: "" active_type: ""
...@@ -84,7 +84,7 @@ input_layer_names: "input" ...@@ -84,7 +84,7 @@ input_layer_names: "input"
input_layer_names: "label" input_layer_names: "label"
input_layer_names: "weight" input_layer_names: "weight"
output_layer_names: "__cost_0__" output_layer_names: "__cost_0__"
output_layer_names: "__regression_cost_0__" output_layer_names: "__mse_cost_0__"
evaluators { evaluators {
name: "classification_error_evaluator" name: "classification_error_evaluator"
type: "classification_error" type: "classification_error"
...@@ -99,12 +99,12 @@ sub_models { ...@@ -99,12 +99,12 @@ sub_models {
layer_names: "weight" layer_names: "weight"
layer_names: "__fc_layer_0__" layer_names: "__fc_layer_0__"
layer_names: "__cost_0__" layer_names: "__cost_0__"
layer_names: "__regression_cost_0__" layer_names: "__mse_cost_0__"
input_layer_names: "input" input_layer_names: "input"
input_layer_names: "label" input_layer_names: "label"
input_layer_names: "weight" input_layer_names: "weight"
output_layer_names: "__cost_0__" output_layer_names: "__cost_0__"
output_layer_names: "__regression_cost_0__" output_layer_names: "__mse_cost_0__"
evaluator_names: "classification_error_evaluator" evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false is_recurrent_layer_group: false
} }
......
...@@ -10,5 +10,5 @@ fc = fc_layer(input=data, size=10, act=SoftmaxActivation()) ...@@ -10,5 +10,5 @@ fc = fc_layer(input=data, size=10, act=SoftmaxActivation())
outputs( outputs(
classification_cost( classification_cost(
input=fc, label=lbl, weight=wt), input=fc, label=lbl, weight=wt),
regression_cost( mse_cost(
input=fc, label=lbl, weight=wt)) input=fc, label=lbl, weight=wt))
...@@ -126,9 +126,8 @@ class CostLayerTest(unittest.TestCase): ...@@ -126,9 +126,8 @@ class CostLayerTest(unittest.TestCase):
cost3 = layer.cross_entropy_cost(input=inference, label=label) cost3 = layer.cross_entropy_cost(input=inference, label=label)
cost4 = layer.cross_entropy_with_selfnorm_cost( cost4 = layer.cross_entropy_with_selfnorm_cost(
input=inference, label=label) input=inference, label=label)
cost5 = layer.regression_cost(input=inference, label=label) cost5 = layer.mse_cost(input=inference, label=label)
cost6 = layer.regression_cost( cost6 = layer.mse_cost(input=inference, label=label, weight=weight)
input=inference, label=label, weight=weight)
cost7 = layer.multi_binary_label_cross_entropy_cost( cost7 = layer.multi_binary_label_cross_entropy_cost(
input=inference, label=label) input=inference, label=label)
cost8 = layer.rank_cost(left=score, right=score, label=score) cost8 = layer.rank_cost(left=score, right=score, label=score)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册