Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7bf7e6e0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7bf7e6e0
编写于
11月 30, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
11月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize for argsort with xpu, test=kunlun (#48440)
上级
7d6263e6
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
424 addition
and
46 deletion
+424
-46
paddle/phi/kernels/xpu/argsort_kernel.cc
paddle/phi/kernels/xpu/argsort_kernel.cc
+176
-45
python/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
+84
-1
python/paddle/fluid/tests/unittests/xpu/test_pad3d_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_pad3d_op_xpu.py
+164
-0
未找到文件。
paddle/phi/kernels/xpu/argsort_kernel.cc
浏览文件 @
7bf7e6e0
...
@@ -20,6 +20,149 @@
...
@@ -20,6 +20,149 @@
namespace
phi
{
namespace
phi
{
template
<
typename
T
,
typename
TID
>
static
inline
void
xpu_argsort
(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
T
*
output_data
,
TID
*
indices_data
,
int
m
,
int
n
,
bool
descending
)
{
int
ret
=
xpu
::
sort
(
ctx
,
input_data
,
output_data
,
indices_data
,
m
,
n
,
descending
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"sort"
);
}
template
<
typename
T
>
static
inline
void
xpu_transpose
(
xpu
::
Context
*
ctx
,
const
T
*
x
,
T
*
y
,
const
std
::
vector
<
int
>&
xshape
,
const
std
::
vector
<
int
>&
permute
)
{
int
ret
=
xpu
::
transpose
(
ctx
,
x
,
y
,
xshape
,
permute
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"transpose"
);
}
template
<
typename
TX
,
typename
TY
>
static
inline
void
xpu_cast
(
xpu
::
Context
*
ctx
,
const
TX
*
x
,
TY
*
y
,
int
len
)
{
int
ret
=
xpu
::
cast
(
ctx
,
x
,
y
,
len
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"cast"
);
}
template
<
typename
T
,
bool
VALUE_NEED_CAST
=
false
,
bool
INDEX_NEED_CAST
=
false
>
struct
XPUArgsort
{
void
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
T
*
output_data
,
int64_t
*
indices_data
,
const
std
::
vector
<
int
>&
data_shape
,
const
std
::
vector
<
int
>&
permute
,
bool
descending
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
);
int
m
=
data_shape
[
0
]
*
data_shape
[
2
];
int
n
=
data_shape
[
1
];
int
len
=
data_shape
[
0
]
*
data_shape
[
1
]
*
data_shape
[
2
];
std
::
vector
<
int
>
trans_data_shape
{
data_shape
[
0
],
data_shape
[
2
],
data_shape
[
1
]};
T
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
T
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
int64_t
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
xpu_transpose
(
ctx
,
input_data
,
input_data_trans
,
data_shape
,
permute
);
xpu_argsort
(
ctx
,
input_data_trans
,
output_data_trans
,
indices_data_trans
,
m
,
n
,
descending
);
xpu_transpose
(
ctx
,
output_data_trans
,
output_data
,
trans_data_shape
,
permute
);
xpu_transpose
(
ctx
,
indices_data_trans
,
indices_data
,
trans_data_shape
,
permute
);
}
};
template
<
typename
T
>
struct
XPUArgsort
<
T
,
false
,
true
>
{
void
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
T
*
output_data
,
int64_t
*
indices_data
,
const
std
::
vector
<
int
>&
data_shape
,
const
std
::
vector
<
int
>&
permute
,
bool
descending
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
);
int
m
=
data_shape
[
0
]
*
data_shape
[
2
];
int
n
=
data_shape
[
1
];
int
len
=
data_shape
[
0
]
*
data_shape
[
1
]
*
data_shape
[
2
];
std
::
vector
<
int
>
trans_data_shape
{
data_shape
[
0
],
data_shape
[
2
],
data_shape
[
1
]};
T
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
T
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
int
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int64_t
*
cast_data_int64
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
xpu_transpose
(
ctx
,
input_data
,
input_data_trans
,
data_shape
,
permute
);
xpu_argsort
(
ctx
,
input_data_trans
,
output_data_trans
,
indices_data_trans
,
m
,
n
,
descending
);
xpu_transpose
(
ctx
,
output_data_trans
,
output_data
,
trans_data_shape
,
permute
);
xpu_cast
(
ctx
,
indices_data_trans
,
cast_data_int64
,
len
);
xpu_transpose
(
ctx
,
cast_data_int64
,
indices_data
,
trans_data_shape
,
permute
);
}
};
template
<
>
struct
XPUArgsort
<
int64_t
,
true
,
true
>
{
void
operator
()(
xpu
::
Context
*
ctx
,
const
int64_t
*
input_data
,
int64_t
*
output_data
,
int64_t
*
indices_data
,
const
std
::
vector
<
int
>&
data_shape
,
const
std
::
vector
<
int
>&
permute
,
bool
descending
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
);
int
m
=
data_shape
[
0
]
*
data_shape
[
2
];
int
n
=
data_shape
[
1
];
int
len
=
data_shape
[
0
]
*
data_shape
[
1
]
*
data_shape
[
2
];
std
::
vector
<
int
>
trans_data_shape
{
data_shape
[
0
],
data_shape
[
2
],
data_shape
[
1
]};
int
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int
*
cast_data_int
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
len
);
int64_t
*
cast_data_int64
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
xpu_cast
(
ctx
,
input_data
,
cast_data_int
,
len
);
xpu_transpose
(
ctx
,
cast_data_int
,
input_data_trans
,
data_shape
,
permute
);
xpu_argsort
(
ctx
,
input_data_trans
,
output_data_trans
,
indices_data_trans
,
m
,
n
,
descending
);
xpu_cast
(
ctx
,
output_data_trans
,
cast_data_int64
,
len
);
xpu_transpose
(
ctx
,
cast_data_int64
,
output_data
,
trans_data_shape
,
permute
);
xpu_cast
(
ctx
,
indices_data_trans
,
cast_data_int64
,
len
);
xpu_transpose
(
ctx
,
cast_data_int64
,
indices_data
,
trans_data_shape
,
permute
);
}
};
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
void
ArgsortKernel
(
const
Context
&
dev_ctx
,
void
ArgsortKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
input
,
...
@@ -35,63 +178,51 @@ void ArgsortKernel(const Context& dev_ctx,
...
@@ -35,63 +178,51 @@ void ArgsortKernel(const Context& dev_ctx,
auto
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
output
);
auto
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
output
);
auto
indices_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
auto
indices_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
bool
is_need_transpose
=
true
;
if
(
axis
==
-
1
||
axis
+
1
==
in_dims
.
size
())
{
is_need_transpose
=
false
;
}
int
len_before
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
axis
));
int
len_before
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
axis
));
int
len_after
=
int
len_after
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
axis
+
1
,
in_dims
.
size
()));
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
axis
+
1
,
in_dims
.
size
()));
int
m
=
len_before
*
len_after
;
int
len
=
m
*
n
;
std
::
vector
<
int
>
permute_vec
{
0
,
2
,
1
};
std
::
vector
<
int
>
permute_vec
{
0
,
2
,
1
};
std
::
vector
<
int
>
data_shape
{
len_before
,
n
,
len_after
};
std
::
vector
<
int
>
data_shape
{
len_before
,
n
,
len_after
};
std
::
vector
<
int
>
data_shape_trans
{
len_before
,
len_after
,
n
};
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
bool
int64_need_cast
=
false
;
if
(
is_need_transpose
)
{
bool
index_need_cast
=
false
;
T
*
input_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
if
(
std
::
is_same
<
T
,
int64_t
>::
value
)
{
PADDLE_ENFORCE_XDNN_NOT_NULL
(
input_data_trans
);
if
((
n
>
10240
)
&&
(
n
<=
16384
))
{
T
*
output_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
int64_need_cast
=
true
;
PADDLE_ENFORCE_XDNN_NOT_NULL
(
output_data_trans
);
}
int64_t
*
indices_data_trans
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
len
);
if
((
n
>
8192
)
&&
(
n
<=
10240
))
{
PADDLE_ENFORCE_XDNN_NOT_NULL
(
indices_data_trans
);
index_need_cast
=
true
;
}
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
}
else
{
input_data
,
if
((
n
>
10240
)
&&
(
n
<=
16384
))
{
input_data_trans
,
index_need_cast
=
true
;
data_shape
,
}
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
input_data
=
input_data_trans
;
output_data
=
output_data_trans
;
indices_data
=
indices_data_trans
;
}
}
int
ret
=
xpu
::
sort
<
T
,
int64_t
>
(
dev_ctx
.
x_context
(),
if
(
int64_need_cast
)
{
XPUArgsort
<
T
,
true
,
true
>
()(
dev_ctx
.
x_context
(),
input_data
,
output_data
,
indices_data
,
data_shape
,
permute_vec
,
descending
);
}
else
if
(
index_need_cast
)
{
XPUArgsort
<
T
,
false
,
true
>
()(
dev_ctx
.
x_context
(),
input_data
,
output_data
,
indices_data
,
data_shape
,
permute_vec
,
descending
);
}
else
{
XPUArgsort
<
T
,
false
,
false
>
()(
dev_ctx
.
x_context
(),
input_data
,
input_data
,
output_data
,
output_data
,
indices_data
,
indices_data
,
m
,
data_shape
,
n
,
permute_vec
,
descending
);
descending
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"sort"
);
if
(
is_need_transpose
)
{
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
output_data
,
output
->
data
<
T
>
(),
data_shape_trans
,
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
r
=
xpu
::
transpose
<
int64_t
>
(
dev_ctx
.
x_context
(),
indices_data
,
indices
->
data
<
int64_t
>
(),
data_shape_trans
,
permute_vec
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"transpose"
);
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
浏览文件 @
7bf7e6e0
# Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
...
@@ -100,9 +100,92 @@ class XPUTestArgsortOp(XPUOpTestWrapper):
...
@@ -100,9 +100,92 @@ class XPUTestArgsortOp(XPUOpTestWrapper):
self
.
check_grad_with_place
(
self
.
place
,
{
'X'
},
'Out'
)
self
.
check_grad_with_place
(
self
.
place
,
{
'X'
},
'Out'
)
class
XPUTestArgsortOp_LargeN
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'argsort'
self
.
use_dynamic_create_class
=
False
class
TestArgsortOpCase1
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
op_type
=
"argsort"
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
dtype
=
self
.
in_type
self
.
axis
=
-
1
if
not
hasattr
(
self
,
'init_axis'
)
else
self
.
init_axis
self
.
init_test_case
()
self
.
descending
=
(
False
if
not
hasattr
(
self
,
'init_descending'
)
else
self
.
init_descending
)
np
.
random
.
seed
(
100
)
if
self
.
dtype
==
np
.
float32
:
self
.
x
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
self
.
dtype
)
else
:
self
.
x
=
np
.
random
.
choice
(
1000000
,
self
.
input_shape
,
replace
=
False
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
"X"
:
self
.
x
}
self
.
attrs
=
{
"axis"
:
self
.
axis
,
"descending"
:
self
.
descending
}
self
.
get_output
()
self
.
outputs
=
{
"Out"
:
self
.
sorted_x
,
"Indices"
:
self
.
indices
}
def
get_output
(
self
):
if
self
.
descending
:
self
.
indices
=
np
.
flip
(
np
.
argsort
(
self
.
x
,
kind
=
'heapsort'
,
axis
=
self
.
axis
),
self
.
axis
,
)
self
.
sorted_x
=
np
.
flip
(
np
.
sort
(
self
.
x
,
kind
=
'heapsort'
,
axis
=
self
.
axis
),
self
.
axis
)
else
:
self
.
indices
=
np
.
argsort
(
self
.
x
,
kind
=
'heapsort'
,
axis
=
self
.
axis
)
self
.
sorted_x
=
np
.
sort
(
self
.
x
,
kind
=
'heapsort'
,
axis
=
self
.
axis
)
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
8732
]
# test for 8192 < n <= 10240
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
{
'X'
},
'Out'
)
class
TestArgsortOpCase2
(
TestArgsortOpCase1
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
10241
]
# test for 10240 < n <= 16384
class
TestArgsortOpCase3
(
TestArgsortOpCase1
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
8732
,
1
,
]
# test for 8192 < n <= 10240 + nees_transpose
self
.
axis
=
1
class
TestArgsortOpCase4
(
TestArgsortOpCase1
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
10241
,
1
,
]
# test for 10240 < n <= 16384 + nees_transpose
self
.
axis
=
1
support_types
=
get_xpu_op_support_types
(
'argsort'
)
support_types
=
get_xpu_op_support_types
(
'argsort'
)
for
stype
in
support_types
:
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestArgsortOp
,
stype
)
create_test_class
(
globals
(),
XPUTestArgsortOp
,
stype
)
create_test_class
(
globals
(),
XPUTestArgsortOp_LargeN
,
stype
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_pad3d_op_xpu.py
浏览文件 @
7bf7e6e0
...
@@ -457,6 +457,170 @@ class XPUTestPad3dOp(XPUOpTestWrapper):
...
@@ -457,6 +457,170 @@ class XPUTestPad3dOp(XPUOpTestWrapper):
np
.
testing
.
assert_allclose
(
y2
.
numpy
(),
np_out2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y2
.
numpy
(),
np_out2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y3
.
numpy
(),
np_out3
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y3
.
numpy
(),
np_out3
,
rtol
=
1e-05
)
class
TestPad1dAPI
(
unittest
.
TestCase
):
def
_get_numpy_out
(
self
,
input_data
,
pad
,
mode
,
value
=
0.0
,
data_format
=
"NCL"
):
if
data_format
==
"NCL"
:
pad
=
[
(
0
,
0
),
(
0
,
0
),
(
pad
[
0
],
pad
[
1
]),
]
else
:
pad
=
[
(
0
,
0
),
(
pad
[
0
],
pad
[
1
]),
(
0
,
0
),
]
if
mode
==
"constant"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
,
constant_values
=
value
)
elif
mode
==
"reflect"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
)
elif
mode
==
"replicate"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"edge"
)
elif
mode
==
"circular"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"wrap"
)
return
out
def
setUp
(
self
):
self
.
places
=
[
paddle
.
XPUPlace
(
0
)]
self
.
dtype
=
self
.
in_type
def
test_class
(
self
):
paddle
.
disable_static
()
for
place
in
self
.
places
:
input_shape
=
(
3
,
4
,
5
)
pad
=
[
1
,
2
]
pad_int
=
1
value
=
100
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
pad_reflection
=
nn
.
Pad1D
(
padding
=
pad
,
mode
=
"reflect"
)
pad_replication
=
nn
.
Pad1D
(
padding
=
pad
,
mode
=
"replicate"
)
pad_constant
=
nn
.
Pad1D
(
padding
=
pad
,
mode
=
"constant"
,
value
=
value
)
pad_constant_int
=
nn
.
Pad1D
(
padding
=
pad_int
,
mode
=
"constant"
,
value
=
value
)
pad_circular
=
nn
.
Pad1D
(
padding
=
pad
,
mode
=
"circular"
)
data
=
paddle
.
to_tensor
(
input_data
)
output
=
pad_reflection
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"reflect"
,
data_format
=
"NCL"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_replication
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"replicate"
,
data_format
=
"NCL"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_constant
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"constant"
,
value
=
value
,
data_format
=
"NCL"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_constant_int
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
[
pad_int
]
*
2
,
"constant"
,
value
=
value
,
data_format
=
"NCL"
,
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
class
TestPad2dAPI
(
unittest
.
TestCase
):
def
_get_numpy_out
(
self
,
input_data
,
pad
,
mode
,
value
=
0.0
,
data_format
=
"NCHW"
):
if
data_format
==
"NCHW"
:
pad
=
[
(
0
,
0
),
(
0
,
0
),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
]
else
:
pad
=
[
(
0
,
0
),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
(
0
,
0
),
]
if
mode
==
"constant"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
,
constant_values
=
value
)
elif
mode
==
"reflect"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
)
elif
mode
==
"replicate"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"edge"
)
elif
mode
==
"circular"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"wrap"
)
return
out
def
setUp
(
self
):
self
.
places
=
[
paddle
.
XPUPlace
(
0
)]
self
.
dtype
=
self
.
in_type
def
test_class
(
self
):
paddle
.
disable_static
()
for
place
in
self
.
places
:
input_shape
=
(
3
,
4
,
5
,
6
)
pad
=
[
1
,
2
,
2
,
1
]
pad_int
=
1
value
=
100
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
pad_reflection
=
nn
.
Pad2D
(
padding
=
pad
,
mode
=
"reflect"
)
pad_replication
=
nn
.
Pad2D
(
padding
=
pad
,
mode
=
"replicate"
)
pad_constant
=
nn
.
Pad2D
(
padding
=
pad
,
mode
=
"constant"
,
value
=
value
)
pad_constant_int
=
nn
.
Pad2D
(
padding
=
pad_int
,
mode
=
"constant"
,
value
=
value
)
pad_circular
=
nn
.
Pad2D
(
padding
=
pad
,
mode
=
"circular"
)
data
=
paddle
.
to_tensor
(
input_data
)
output
=
pad_reflection
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"reflect"
,
data_format
=
"NCHW"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_replication
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"replicate"
,
data_format
=
"NCHW"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_constant
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"constant"
,
value
=
value
,
data_format
=
"NCHW"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_constant_int
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
[
pad_int
]
*
4
,
"constant"
,
value
=
value
,
data_format
=
"NCHW"
,
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
class
TestPad3dAPI
(
unittest
.
TestCase
):
class
TestPad3dAPI
(
unittest
.
TestCase
):
def
_get_numpy_out
(
def
_get_numpy_out
(
self
,
input_data
,
pad
,
mode
,
value
=
0.0
,
data_format
=
"NCDHW"
self
,
input_data
,
pad
,
mode
,
value
=
0.0
,
data_format
=
"NCDHW"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录