Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7bb627d3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7bb627d3
编写于
12月 05, 2016
作者:
T
Tao Luo
提交者:
GitHub
12月 05, 2016
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #409 from luotao1/conv
Support rectangle input for CNN
上级
a0a87ac0
7830893a
变更
29
隐藏空白更改
内联
并排
Showing
29 changed file
with
387 addition
and
282 deletion
+387
-282
paddle/gserver/layers/BatchNormBaseLayer.cpp
paddle/gserver/layers/BatchNormBaseLayer.cpp
+5
-7
paddle/gserver/layers/BatchNormBaseLayer.h
paddle/gserver/layers/BatchNormBaseLayer.h
+2
-3
paddle/gserver/layers/BilinearInterpLayer.cpp
paddle/gserver/layers/BilinearInterpLayer.cpp
+3
-3
paddle/gserver/layers/ConvBaseLayer.cpp
paddle/gserver/layers/ConvBaseLayer.cpp
+10
-6
paddle/gserver/layers/ConvOperator.cpp
paddle/gserver/layers/ConvOperator.cpp
+9
-4
paddle/gserver/layers/ConvProjection.cpp
paddle/gserver/layers/ConvProjection.cpp
+6
-4
paddle/gserver/layers/DataLayer.cpp
paddle/gserver/layers/DataLayer.cpp
+7
-2
paddle/gserver/layers/ExpandConvBaseLayer.cpp
paddle/gserver/layers/ExpandConvBaseLayer.cpp
+15
-13
paddle/gserver/layers/MaxOutLayer.cpp
paddle/gserver/layers/MaxOutLayer.cpp
+3
-3
paddle/gserver/layers/NormLayer.cpp
paddle/gserver/layers/NormLayer.cpp
+3
-0
paddle/gserver/layers/NormLayer.h
paddle/gserver/layers/NormLayer.h
+1
-1
paddle/gserver/layers/NormProjectionLayer.cpp
paddle/gserver/layers/NormProjectionLayer.cpp
+1
-1
paddle/gserver/layers/SpatialPyramidPoolLayer.cpp
paddle/gserver/layers/SpatialPyramidPoolLayer.cpp
+7
-6
paddle/gserver/tests/img_pool_a.conf
paddle/gserver/tests/img_pool_a.conf
+0
-2
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+53
-36
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+2
-0
paddle/trainer/tests/test_config.conf
paddle/trainer/tests/test_config.conf
+0
-1
proto/ModelConfig.proto.m4
proto/ModelConfig.proto.m4
+24
-16
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+117
-122
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+12
-16
python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
...config_helpers/tests/configs/protostr/img_layers.protostr
+13
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
..._helpers/tests/configs/protostr/img_trans_layers.protostr
+11
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
...onfig_helpers/tests/configs/protostr/projections.protostr
+2
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
...pers/tests/configs/protostr/test_bilinear_interp.protostr
+20
-6
python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
...onfig_helpers/tests/configs/protostr/test_maxout.protostr
+40
-16
python/paddle/trainer_config_helpers/tests/configs/protostr/test_spp_layer.protostr
...ig_helpers/tests/configs/protostr/test_spp_layer.protostr
+9
-3
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
...iner_config_helpers/tests/configs/test_bilinear_interp.py
+1
-1
python/paddle/trainer_config_helpers/tests/configs/test_maxout.py
...addle/trainer_config_helpers/tests/configs/test_maxout.py
+9
-4
python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py
...le/trainer_config_helpers/tests/configs/test_spp_layer.py
+2
-6
未找到文件。
paddle/gserver/layers/BatchNormBaseLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -60,14 +60,12 @@ bool BatchNormBaseLayer::init(const LayerMap& layerMap,
void
BatchNormBaseLayer
::
calFeatureMapSize
()
{
const
ImageConfig
&
conf
=
config_
.
inputs
(
0
).
image_conf
();
i
f
(
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
()
==
0
&&
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
()
==
0
)
{
imgSize_
=
conf
.
img_size
();
imageH_
=
imgSize_
;
imageW_
=
imgSize_
;
i
mageH_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
imageW_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
imageH_
==
0
&&
imageW_
==
0
)
{
imageH_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
()
;
imageW_
=
conf
.
img_size
()
;
}
else
{
imageH_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
imageW_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
getOutput
().
setFrameHeight
(
imageH_
);
getOutput
().
setFrameWidth
(
imageW_
);
}
...
...
paddle/gserver/layers/BatchNormBaseLayer.h
浏览文件 @
7bb627d3
...
...
@@ -77,9 +77,8 @@ protected:
MatrixPtr
savedMean_
;
MatrixPtr
savedInvVar_
;
/// Height or width of input image feature, now height is equal to width.
/// imgSize is 1 if the input is fully-connected layer.
int
imgSize_
;
/// Height or width of input image feature.
/// Both of them are 1 if the input is fully-connected layer.
int
imageH_
;
int
imageW_
;
/// Height * Width.
...
...
paddle/gserver/layers/BilinearInterpLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -26,15 +26,15 @@ size_t BilinearInterpLayer::getSize() {
const
BilinearInterpConfig
&
conf
=
config_
.
inputs
(
0
).
bilinear_interp_conf
();
if
(
inImgH_
==
0
)
{
inImgH_
=
conf
.
img_size_y
();
inImgH_
=
conf
.
im
age_conf
().
im
g_size_y
();
}
if
(
inImgW_
==
0
)
{
inImgW_
=
conf
.
im
g_size_x
();
inImgW_
=
conf
.
im
age_conf
().
img_size
();
}
outImgH_
=
conf
.
out_size_y
();
outImgW_
=
conf
.
out_size_x
();
numChannels_
=
conf
.
num_
channels
();
numChannels_
=
conf
.
image_conf
().
channels
();
CHECK
(
outImgH_
>
0
&&
outImgW_
>
0
);
CHECK
(
inImgH_
>
0
&&
inImgW_
>
0
);
...
...
paddle/gserver/layers/ConvBaseLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -38,11 +38,12 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
filterSizeY_
.
push_back
(
conf
.
filter_size_y
());
filterPixels_
.
push_back
(
filterSize_
.
back
()
*
filterSizeY_
.
back
());
channels_
.
push_back
(
conf
.
channels
());
imgSizeH_
.
push_back
(
conf
.
img_size
());
imgSizeH_
.
push_back
(
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
());
imgSizeW_
.
push_back
(
conf
.
img_size
());
groups_
.
push_back
(
conf
.
groups
());
filterChannels_
.
push_back
(
conf
.
filter_channels
());
outputH_
.
push_back
(
conf
.
output_x
());
outputH_
.
push_back
(
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
());
outputW_
.
push_back
(
conf
.
output_x
());
}
...
...
@@ -91,16 +92,19 @@ size_t ConvBaseLayer::calOutputSize() {
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
inH
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameHeight
());
inW
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameWidth
());
const
ConvConfig
&
conf
=
config_
.
inputs
(
i
).
conv_conf
();
if
(
isDeconv_
)
{
if
(
inH
[
i
]
==
0
)
inH
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
output_x
();
if
(
inW
[
i
]
==
0
)
inW
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
output_x
();
if
(
inH
[
i
]
==
0
)
inH
[
i
]
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
if
(
inW
[
i
]
==
0
)
inW
[
i
]
=
conf
.
output_x
();
outH
.
push_back
(
imageSize
(
inH
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outW
.
push_back
(
imageSize
(
inW
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
}
else
{
if
(
inH
[
i
]
==
0
)
inH
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
inW
[
i
]
==
0
)
inW
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
inH
[
i
]
==
0
)
inH
[
i
]
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
if
(
inW
[
i
]
==
0
)
inW
[
i
]
=
conf
.
img_size
();
outH
.
push_back
(
outputSize
(
inH
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outW
.
push_back
(
outputSize
(
...
...
paddle/gserver/layers/ConvOperator.cpp
浏览文件 @
7bb627d3
...
...
@@ -93,9 +93,9 @@ private:
bool
caffeMode_
;
int
inputOffset_
,
outputOffset_
,
weightOffset_
;
int
numFilters_
;
int
padding_
,
stride_
,
filterSize_
,
channels_
,
imgSize_
;
int
padding_
,
stride_
,
filterSize_
,
channels_
,
imgSize_
,
imgSizeY_
;
int
paddingY_
,
strideY_
,
filterSizeY_
;
int
imgPixels_
,
filterPixels_
,
filterChannels_
,
outputX_
,
outputs_
;
int
imgPixels_
,
filterPixels_
,
filterChannels_
,
outputX_
,
output
Y_
,
output
s_
;
/// Following member variables are same with CudnnConvLayer.
/// There is no explanation here.
...
...
@@ -144,7 +144,7 @@ void ConvOperator::allocConvWorkSpace(size_t maxWorkSpace) {
void
ConvOperator
::
reshape
(
int
batchSize
)
{
imageH_
=
ins_
[
0
]
->
getFrameHeight
();
imageW_
=
ins_
[
0
]
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
imgSize_
;
if
(
imageH_
==
0
)
imageH_
=
imgSize
Y
_
;
if
(
imageW_
==
0
)
imageW_
=
imgSize_
;
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
...
...
@@ -182,7 +182,10 @@ void ConvOperator::computeConvSizes() {
hl_create_tensor_descriptor
(
&
inputDesc_
);
int
outputX
=
outputSize
(
imgSize_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
int
outputY
=
outputSize
(
imgSizeY_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
CHECK_EQ
(
outputX
,
outputX_
);
CHECK_EQ
(
outputY
,
outputY_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
inputDesc_
,
...
...
@@ -236,10 +239,12 @@ void ConvOperator::getConvParams() {
filterPixels_
=
filterSize_
*
filterSizeY_
;
channels_
=
conf
.
channels
();
imgSize_
=
conf
.
img_size
();
imgPixels_
=
imgSize_
*
imgSize_
;
imgSizeY_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
imgPixels_
=
imgSize_
*
imgSizeY_
;
CHECK_EQ
(
conf
.
groups
(),
1U
);
filterChannels_
=
conf
.
filter_channels
();
outputX_
=
conf
.
output_x
();
outputY_
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
outputs_
=
outputX_
*
outputX_
;
}
...
...
paddle/gserver/layers/ConvProjection.cpp
浏览文件 @
7bb627d3
...
...
@@ -46,7 +46,7 @@ void ConvProjection::getConvParams() {
filterH_
=
conf
.
filter_size_y
();
filterW_
=
conf
.
filter_size
();
configImgH_
=
conf
.
img_size
();
configImgH_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
configImgW_
=
conf
.
img_size
();
channels_
=
conf
.
channels
();
...
...
@@ -58,9 +58,11 @@ void ConvProjection::getConvParams() {
}
void
ConvProjection
::
initCudnn
()
{
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
/
groups_
,
numFilters_
/
groups_
,
filterH_
,
filterW_
);
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
/
groups_
,
numFilters_
/
groups_
,
filterH_
,
filterW_
);
hl_create_tensor_descriptor
(
&
inputDesc_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
...
...
paddle/gserver/layers/DataLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -49,8 +49,13 @@ void DataLayer::copyDataToOutput(Argument& output) {
output
.
ids
->
copyFrom
(
*
data_
.
ids
);
}
}
output
.
setFrameHeight
(
data_
.
getFrameHeight
());
output
.
setFrameWidth
(
data_
.
getFrameWidth
());
if
(
config_
.
height
()
&&
config_
.
width
())
{
output
.
setFrameHeight
(
config_
.
height
());
output
.
setFrameWidth
(
config_
.
width
());
}
else
{
output
.
setFrameHeight
(
data_
.
getFrameHeight
());
output
.
setFrameHeight
(
data_
.
getFrameHeight
());
}
output
.
cpuSequenceDims
=
data_
.
cpuSequenceDims
;
output
.
sequenceStartPositions
=
data_
.
sequenceStartPositions
;
output
.
subSequenceStartPositions
=
data_
.
subSequenceStartPositions
;
...
...
paddle/gserver/layers/ExpandConvBaseLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -29,17 +29,19 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
* meaning as in conv, we need to swap channels_ and numFilters here for
* convTrans, and in other functions too.
* */
int
channel
;
int
numFilters
;
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
numFilters
=
isDeconv_
?
conf
.
channels
()
:
numFilters_
;
int
numFilters
=
isDeconv_
?
conf
.
channels
()
:
numFilters_
;
subM_
.
push_back
(
numFilters
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
channel
=
isDeconv_
?
numFilters_
:
conf
.
channels
();
subK_
.
push_back
(
channel
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
(
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
()));
int
channel
=
isDeconv_
?
numFilters_
:
conf
.
channels
();
subK_
.
push_back
(
channel
*
conf
.
filter_size
()
*
(
conf
.
has_filter_size_y
()
?
conf
.
filter_size_y
()
:
conf
.
filter_size
())
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
...
...
@@ -116,11 +118,11 @@ void ExpandConvBaseLayer::expandOneFrame(MatrixPtr image,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channel
,
filterSizeY_
[
inIdx
],
filterSize_
[
inIdx
],
filterSize
_
[
inIdx
],
strideY
_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
paddingY_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
...
...
@@ -208,11 +210,11 @@ void ExpandConvBaseLayer::bpropActs(MatrixPtr out,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channel
,
filterSizeY_
[
inpIdx
],
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
strideY_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding
Y
_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
...
...
paddle/gserver/layers/MaxOutLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -25,10 +25,10 @@ size_t MaxOutLayer::getSize() {
imgSizeH_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
imgSizeW_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
imgSizeH_
==
0
)
{
imgSizeH_
=
maxoutConf
.
img_size_y
();
imgSizeH_
=
maxoutConf
.
im
age_conf
().
im
g_size_y
();
}
if
(
imgSizeW_
==
0
)
{
imgSizeW_
=
maxoutConf
.
im
g_size_x
();
imgSizeW_
=
maxoutConf
.
im
age_conf
().
img_size
();
}
featLen_
=
imgSizeH_
*
imgSizeW_
;
...
...
@@ -50,7 +50,7 @@ bool MaxOutLayer::init(const LayerMap& layerMap,
const
MaxOutConfig
&
conf
=
config_
.
inputs
(
0
).
maxout_conf
();
groups_
=
conf
.
groups
();
channels_
=
conf
.
channels
();
channels_
=
conf
.
image_conf
().
channels
();
CHECK_EQ
(
channels_
%
groups_
,
0UL
);
outputChannels_
=
channels_
/
groups_
;
...
...
paddle/gserver/layers/NormLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -48,6 +48,9 @@ bool ResponseNormLayer::init(const LayerMap& layerMap,
outputX_
=
conf
.
output_x
();
imgSize_
=
conf
.
img_size
();
denoms_
=
NULL
;
outputY_
=
conf
.
has_output_y
()
?
conf
.
output_y
()
:
conf
.
output_x
();
imgSizeY_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
return
true
;
}
...
...
paddle/gserver/layers/NormLayer.h
浏览文件 @
7bb627d3
...
...
@@ -49,7 +49,7 @@ public:
*/
class
ResponseNormLayer
:
public
NormLayer
{
protected:
size_t
channels_
,
size_
,
outputX_
,
imgSize_
;
size_t
channels_
,
size_
,
outputX_
,
imgSize_
,
outputY_
,
imgSizeY_
;
float
scale_
,
pow_
;
MatrixPtr
denoms_
;
...
...
paddle/gserver/layers/NormProjectionLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -23,7 +23,7 @@ size_t CMRProjectionNormLayer::getSize() {
imgSizeH_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
imgSizeW_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
imgSizeH_
==
0
)
{
imgSizeH_
=
imgSize_
;
imgSizeH_
=
imgSize
Y
_
;
}
if
(
imgSizeW_
==
0
)
{
imgSizeW_
=
imgSize_
;
...
...
paddle/gserver/layers/SpatialPyramidPoolLayer.cpp
浏览文件 @
7bb627d3
...
...
@@ -56,14 +56,14 @@ ProjectionConfig SpatialPyramidPoolLayer::getConfig(size_t imgSizeW,
size_t
SpatialPyramidPoolLayer
::
getSize
()
{
CHECK_EQ
(
inputLayers_
.
size
(),
1UL
);
size_t
layerSize
=
0
;
const
SppConfig
&
sppConf
=
config_
.
inputs
(
0
).
spp
_conf
();
const
ImageConfig
&
conf
=
config_
.
inputs
(
0
).
spp_conf
().
image
_conf
();
imgSizeH_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
imgSizeW_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
imgSizeH_
==
0
)
{
imgSizeH_
=
sppConf
.
has_img_size_y
()
?
sppConf
.
img_size_y
()
:
imgSizeW_
;
imgSizeH_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
()
;
}
if
(
imgSizeW_
==
0
)
{
imgSizeW_
=
sppC
onf
.
img_size
();
imgSizeW_
=
c
onf
.
img_size
();
}
size_t
outputH
=
1
;
...
...
@@ -82,9 +82,10 @@ bool SpatialPyramidPoolLayer::init(const LayerMap& layerMap,
pyramidHeight_
=
sppConf
.
pyramid_height
();
poolType_
=
sppConf
.
pool_type
();
channels_
=
sppConf
.
channels
();
imgSizeW_
=
sppConf
.
img_size
();
imgSizeH_
=
sppConf
.
has_img_size_y
()
?
sppConf
.
img_size_y
()
:
imgSizeW_
;
const
ImageConfig
&
imageConf
=
sppConf
.
image_conf
();
channels_
=
imageConf
.
channels
();
imgSizeW_
=
imageConf
.
img_size
();
imgSizeH_
=
imageConf
.
has_img_size_y
()
?
imageConf
.
img_size_y
()
:
imgSizeW_
;
poolProjections_
.
reserve
(
pyramidHeight_
);
projCol_
.
reserve
(
pyramidHeight_
);
projOutput_
.
resize
(
pyramidHeight_
);
...
...
paddle/gserver/tests/img_pool_a.conf
浏览文件 @
7bb627d3
...
...
@@ -28,7 +28,6 @@ maxpool = img_pool_layer(input=conv,
stride_y
=
2
,
padding
=
1
,
padding_y
=
2
,
img_width
=
16
,
pool_type
=
MaxPooling
(),
)
avgpool
=
img_pool_layer
(
input
=
conv
,
...
...
@@ -39,7 +38,6 @@ avgpool = img_pool_layer(input=conv,
stride_y
=
2
,
padding
=
1
,
padding_y
=
2
,
img_width
=
16
,
pool_type
=
AvgPooling
(),
)
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
7bb627d3
...
...
@@ -202,16 +202,15 @@ void testProjectionConv(size_t groups) {
conf
.
set_input_size
(
IMAGE_SIZE
*
IMAGE_SIZE
*
CHANNELS
);
conf
.
set_output_size
(
output_x
*
output_y
*
NUM_FILTERS
);
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
NUM_FILTERS
*
CHANNELS
*
FILTER_SIZE
*
FILTER_SIZE_Y
/
groups
,
/* batchSize */
100
,
true
,
false
,
NUM_FILTERS
,
true
);
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
NUM_FILTERS
*
CHANNELS
*
FILTER_SIZE
*
FILTER_SIZE_Y
/
groups
,
/* batchSize */
100
,
true
,
false
,
NUM_FILTERS
,
true
);
}
#ifndef PADDLE_ONLY_CPU
...
...
@@ -229,9 +228,10 @@ TEST(Layer, BilinearInterpLayer) {
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
BilinearInterpConfig
*
bilinear
=
input
->
mutable_bilinear_interp_conf
();
bilinear
->
set_img_size_x
(
32
);
bilinear
->
set_img_size_y
(
32
);
bilinear
->
set_num_channels
(
4
);
ImageConfig
*
image
=
bilinear
->
mutable_image_conf
();
image
->
set_img_size
(
32
);
image
->
set_img_size_y
(
32
);
image
->
set_channels
(
4
);
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
outSize
:
{
32
,
64
})
{
...
...
@@ -354,7 +354,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
768
,
288
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
384
,
288
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
...
...
@@ -367,12 +367,18 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_img_size_y
(
8
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
conv
->
set_output_y
(
outputSize
(
conv
->
img_size_y
(),
conv
->
filter_size_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_y
()
*
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"conv"
,
100
,
trans
,
useGpu
);
...
...
@@ -472,10 +478,11 @@ TEST(Layer, maxoutLayer) {
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
4096
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
MaxOutConfig
*
maxout
=
input
->
mutable_maxout_conf
();
ImageConfig
*
image
=
maxout
->
mutable_image_conf
();
maxout
->
set_img_size_x
(
32
);
maxout
->
set_img_size_y
(
32
);
maxout
->
set_channels
(
4
);
image
->
set_img_size
(
32
);
image
->
set_img_size_y
(
32
);
image
->
set_channels
(
4
);
maxout
->
set_groups
(
2
);
for
(
auto
useGpu
:
{
false
,
true
})
{
...
...
@@ -987,7 +994,7 @@ void testNormLayer(const string& normType, bool trans, bool useGpu) {
config
.
layerConfig
.
set_type
(
"norm"
);
config
.
layerConfig
.
set_active_type
(
"relu"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
3136
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1568
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
NormConfig
*
norm
=
input
->
mutable_norm_conf
();
norm
->
set_norm_type
(
normType
);
...
...
@@ -997,7 +1004,9 @@ void testNormLayer(const string& normType, bool trans, bool useGpu) {
norm
->
set_pow
(
0.75
);
norm
->
set_blocked
(
0
);
norm
->
set_img_size
(
14
);
norm
->
set_img_size_y
(
7
);
norm
->
set_output_x
(
norm
->
img_size
());
norm
->
set_output_y
(
norm
->
img_size_y
());
if
(
norm
->
norm_type
()
==
"cmrnorm"
||
norm
->
norm_type
()
==
"cmrnorm-projection"
)
{
norm
->
set_scale
(
norm
->
scale
()
/
norm
->
size
());
...
...
@@ -1005,7 +1014,7 @@ void testNormLayer(const string& normType, bool trans, bool useGpu) {
norm
->
set_scale
(
norm
->
scale
()
/
(
norm
->
size
()
*
norm
->
size
()));
}
config
.
layerConfig
.
set_size
(
norm
->
output_x
()
*
norm
->
output_
x
()
*
config
.
layerConfig
.
set_size
(
norm
->
output_x
()
*
norm
->
output_
y
()
*
norm
->
channels
());
config
.
biasSize
=
0
;
...
...
@@ -1106,11 +1115,12 @@ void testSppLayer(const string& poolType,
SppConfig
*
sppConfig
=
input
->
mutable_spp_conf
();
sppConfig
->
set_pool_type
(
poolType
);
sppConfig
->
set_pyramid_height
(
pyramidHeight
);
sppConfig
->
set_channels
(
16
);
sppConfig
->
set_img_size
(
10
);
sppConfig
->
set_img_size_y
(
20
);
ImageConfig
*
imageConfig
=
sppConfig
->
mutable_image_conf
();
imageConfig
->
set_channels
(
16
);
imageConfig
->
set_img_size
(
10
);
imageConfig
->
set_img_size_y
(
20
);
int
outputSize
=
(
std
::
pow
(
4
,
sppConfig
->
pyramid_height
())
-
1
)
/
(
4
-
1
);
config
.
layerConfig
.
set_size
(
outputSize
*
spp
Config
->
channels
());
config
.
layerConfig
.
set_size
(
outputSize
*
image
Config
->
channels
());
testLayerGrad
(
config
,
"spp"
,
100
,
trans
,
useGpu
);
}
...
...
@@ -1420,13 +1430,15 @@ void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
TestConfig
config
;
const
int
CHANNELS
=
10
;
const
int
IMG_SIZE
=
16
;
const
int
IMG_SIZE_Y
=
8
;
size_t
size
=
CHANNELS
*
IMG_SIZE
*
IMG_SIZE_Y
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_size
(
CHANNELS
*
IMG_SIZE
*
IMG_SIZE
);
config
.
layerConfig
.
set_size
(
size
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
biasSize
=
CHANNELS
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
/* dim= */
IMG_SIZE
*
IMG_SIZE
*
CHANNELS
,
/* dim= */
size
,
/* paraSize= */
CHANNELS
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1_running_mean"
,
1
,
CHANNELS
});
...
...
@@ -1441,6 +1453,7 @@ void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
img_conf
->
set_channels
(
CHANNELS
);
img_conf
->
set_img_size
(
IMG_SIZE
);
img_conf
->
set_img_size_y
(
IMG_SIZE_Y
);
testLayerGrad
(
config
,
"batch_norm"
,
...
...
@@ -1467,6 +1480,7 @@ TEST(Operator, conv) {
const
int
FILTER_SIZE_Y
=
3
;
const
int
CHANNELS
=
3
;
const
int
IMAGE_SIZE
=
16
;
const
int
IMAGE_SIZE_Y
=
8
;
OperatorConfig
&
operatorConf
=
*
config
.
layerConfig
.
add_operator_confs
();
operatorConf
.
set_type
(
"conv"
);
ConvConfig
*
conv
=
operatorConf
.
mutable_conv_conf
();
...
...
@@ -1481,19 +1495,22 @@ TEST(Operator, conv) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
int
output_x
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
);
conv
->
set_output_x
(
output_x
);
config
.
layerConfig
.
set_size
(
output_x
*
output_x
*
config
.
layerConfig
.
num_filters
());
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
conv
->
set_img_size_y
(
IMAGE_SIZE_Y
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
conv
->
set_output_y
(
outputSize
(
conv
->
img_size_y
(),
conv
->
filter_size_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_y
()
*
NUM_FILTERS
);
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
IMAGE_SIZE
*
IMAGE_SIZE
*
CHANNELS
,
0
});
{
INPUT_DATA
,
"layer_0"
,
IMAGE_SIZE
*
IMAGE_SIZE
_Y
*
CHANNELS
,
0
});
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_1"
,
...
...
paddle/parameter/Argument.cpp
浏览文件 @
7bb627d3
...
...
@@ -225,6 +225,8 @@ void Argument::resizeAndCopyFrom(const Argument& src,
}
resizeAndCopy
(
udp
,
src
.
udp
,
useGpu
,
stream
);
resizeAndCopy
(
strs
,
src
.
strs
,
useGpu
,
stream
);
frameWidth
=
src
.
frameWidth
;
frameHeight
=
src
.
frameHeight
;
}
int32_t
Argument
::
resizeAndCopyFrom
(
const
Argument
&
src
,
...
...
paddle/trainer/tests/test_config.conf
浏览文件 @
7bb627d3
...
...
@@ -59,7 +59,6 @@ pool = img_pool_layer(input=fc2,
padding_y
=
2
,
stride
=
2
,
stride_y
=
3
,
img_width
=
3
,
pool_type
=
CudnnAvgPooling
())
concat
=
concat_layer
(
input
=[
fc3
,
fc4
])
...
...
proto/ModelConfig.proto.m4
浏览文件 @
7bb627d3
...
...
@@ -77,6 +77,12 @@ message ConvConfig {
required uint32 filter_size_y = 10;
required uint32 padding_y = 11;
required uint32 stride_y = 12;
// if not set, use output_x
optional uint32 output_y = 13;
// if not set, use img_size
optional uint32 img_size_y = 14;
}
message PoolConfig {
...
...
@@ -122,11 +128,9 @@ message PoolConfig {
}
message SppConfig {
required string pool_type = 1;
required uint32 pyramid_height = 2;
required uint32 channels = 3;
required uint32 img_size = 4;
optional uint32 img_size_y = 5;
required ImageConfig image_conf = 1;
required string pool_type = 2;
required uint32 pyramid_height = 3;
}
message NormConfig {
...
...
@@ -156,6 +160,12 @@ message NormConfig {
// fixed window: shared a fixed window for each value
// sliding window: have a different window for each value
optional bool blocked = 8;
// if not set, use output_x
optional uint32 output_y = 9;
// if not set, use img_size
optional uint32 img_size_y = 10;
}
message BlockExpandConfig {
...
...
@@ -180,12 +190,8 @@ message BlockExpandConfig {
}
message MaxOutConfig {
required
uint32 channels
= 1;
required
ImageConfig image_conf
= 1;
required uint32 groups = 2;
// The size of input feature map.
required uint32 img_size_x = 3;
required uint32 img_size_y = 4;
}
message ProjectionConfig {
...
...
@@ -226,12 +232,10 @@ message OperatorConfig {
message BilinearInterpConfig {
// The size of input feature map.
optional uint32 img_size_x = 1;
optional uint32 img_size_y = 2;
required ImageConfig image_conf = 1;
// The size of output feature map.
required uint32 out_size_x = 3;
required uint32 out_size_y = 4;
required uint32 num_channels = 5;
required uint32 out_size_x = 2;
required uint32 out_size_y = 3;
}
message ImageConfig {
...
...
@@ -241,6 +245,7 @@ message ImageConfig {
// The size of input feature map.
required uint32 img_size = 8;
required uint32 img_size_y = 9;
}
message LayerInputConfig {
...
...
@@ -413,7 +418,10 @@ sinclude(`ModelConfigLayer.proto.m4')
//
string
type
is
used
for
flexibility
:
different
types
can
be
converted
//
to
string
and
reinterpreted
in
the
user
's own layer implementation.
optional string user_arg = 49;
// to indicate rectangle image data
optional uint64 height = 50;
optional uint64 width = 51;
}
message EvaluatorConfig {
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
7bb627d3
...
...
@@ -138,7 +138,14 @@ def init_config_environment(
g_root_submodel
=
None
,
g_submodel_map
=
{},
g_submodel_stack
=
[],
g_add_submodel_suffix
=
False
,
):
g_add_submodel_suffix
=
False
,
# Whether current layer needs to pass the image height and width.
# Default value is true, but if it encounters recurrent_layer_group,
# it will be false. The reason is that image is converted to be sequence,
# image height will be sequence length, and image width will be feature
# length of each timestep.
g_pass_height_width
=
True
,
):
for
k
,
v
in
locals
().
iteritems
():
globals
()[
k
]
=
copy
.
deepcopy
(
v
)
...
...
@@ -686,9 +693,9 @@ class ConvProjection(Projection):
parse_conv
(
conv_conf
,
input_layer_name
,
self
.
proj_conf
.
conv_conf
,
num_filters
)
# TODO: support rectangle input
self
.
proj_conf
.
output_size
=
(
self
.
proj_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
self
.
proj_conf
.
output_size
=
self
.
proj_conf
.
conv_conf
.
output_x
*
\
self
.
proj_conf
.
conv_conf
.
output_y
*
\
num_filters
def
calc_output_size
(
self
,
input_layer_config
):
return
self
.
proj_conf
.
output_size
...
...
@@ -764,8 +771,9 @@ class ConvOperator(Operator):
parse_conv
(
conv_conf
,
MakeLayerNameInSubmodel
(
input_layer_names
[
0
]),
self
.
operator_conf
.
conv_conf
,
num_filters
)
self
.
operator_conf
.
output_size
=
(
self
.
operator_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
self
.
operator_conf
.
output_size
=
self
.
operator_conf
.
conv_conf
.
output_x
*
\
self
.
operator_conf
.
conv_conf
.
output_y
*
\
num_filters
config_assert
(
len
(
input_layer_names
)
==
2
,
"Conv is binary operator"
)
...
...
@@ -800,14 +808,12 @@ class Conv(Cfg):
config_assert
(
output_x
<=
0
)
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
BilinearInterp
(
Cfg
):
def
__init__
(
self
,
out_size_x
=
None
,
out_size_y
=
None
,
num_
channels
=
None
):
def
__init__
(
self
,
out_size_x
=
None
,
out_size_y
=
None
,
channels
=
None
):
self
.
add_keys
(
locals
())
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
Pool
(
Cfg
):
def
__init__
(
...
...
@@ -825,14 +831,12 @@ class Pool(Cfg):
self
.
add_keys
(
locals
())
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
SpatialPyramidPool
(
Cfg
):
def
__init__
(
self
,
pool_type
,
pyramid_height
,
channels
,
img_width
=
None
):
def
__init__
(
self
,
pool_type
,
pyramid_height
,
channels
):
self
.
add_keys
(
locals
())
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
Norm
(
Cfg
):
def
__init__
(
self
,
...
...
@@ -847,7 +851,6 @@ class Norm(Cfg):
self
.
add_keys
(
locals
())
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
Image
(
Cfg
):
def
__init__
(
self
,
channels
,
img_size
=
None
):
...
...
@@ -1054,18 +1057,8 @@ def TestData(data_config, async_load_data=None):
g_config
.
test_data_config
.
async_load_data
=
async_load_data
def
parse_bilinear
(
bilinear
,
input_layer_name
,
bilinear_conf
):
bilinear_conf
.
out_size_x
=
bilinear
.
out_size_x
bilinear_conf
.
out_size_y
=
bilinear
.
out_size_y
bilinear_conf
.
num_channels
=
bilinear
.
num_channels
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
#caffe_mode: compute the output size using floor instead of ceil,
# which is consistent of caffe and CuDNN's convention.
def
cnn_output_size
(
img_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
output
=
(
2
*
padding
+
img_size
-
filter_size
)
/
float
(
stride
)
if
caffe_mode
:
...
...
@@ -1074,20 +1067,34 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
return
1
+
int
(
math
.
ceil
(
output
))
'''
calcualte image_size based on output_size for convolution.
It is the reverse function of cnn_output_size
'''
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
#It is the reverse function of cnn_output_size
def
cnn_image_size
(
output_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
if
caffe_mode
:
img_size
=
(
output_size
-
1
)
*
stride
+
filter_size
-
2
*
padding
else
:
img_size
=
(
output_size
-
2
)
*
stride
+
filter_size
-
2
*
padding
+
1
img_size
=
(
output_size
-
1
)
*
stride
+
filter_size
-
2
*
padding
if
not
caffe_mode
:
img_size
=
img_size
+
1
return
img_size
def
get_img_size
(
input_layer_name
,
channels
):
input
=
g_layer_map
[
input_layer_name
]
img_pixels
=
input
.
size
/
channels
img_size
=
input
.
width
if
input
.
width
>
0
else
int
(
img_pixels
**
0.5
)
img_size_y
=
input
.
height
if
input
.
height
>
0
else
int
(
img_pixels
/
img_size
)
config_assert
(
img_size
*
img_size_y
==
img_pixels
,
"Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
%
(
input_layer_name
,
img_size
,
img_size_y
,
img_pixels
))
return
img_size
,
img_size_y
def
parse_bilinear
(
bilinear
,
input_layer_name
,
bilinear_conf
):
parse_image
(
bilinear
,
input_layer_name
,
bilinear_conf
.
image_conf
)
bilinear_conf
.
out_size_x
=
bilinear
.
out_size_x
bilinear_conf
.
out_size_y
=
bilinear
.
out_size_y
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
):
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
...
...
@@ -1103,14 +1110,8 @@ def parse_pool(pool, input_layer_name, pool_conf):
pool_conf
.
size_y
=
default
(
pool
.
size_y
,
pool_conf
.
size_x
)
pool_conf
.
stride_y
=
default
(
pool
.
stride_y
,
pool_conf
.
stride
)
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
pool
.
channels
# the img_width may be removed,
# and it can be calculated automatically later.
pool_conf
.
img_size
=
default
(
pool
.
img_width
,
int
(
img_pixels
**
0.5
))
pool_conf
.
img_size_y
=
img_pixels
/
pool_conf
.
img_size
config_assert
(
pool_conf
.
img_size
*
pool_conf
.
img_size_y
==
img_pixels
,
"Incorrect input image size %d for input image pixels %d"
%
(
pool_conf
.
img_size
,
img_pixels
))
pool_conf
.
img_size
,
pool_conf
.
img_size_y
=
\
get_img_size
(
input_layer_name
,
pool
.
channels
)
config_assert
(
not
pool
.
start
,
"start is deprecated in pooling."
)
...
...
@@ -1126,29 +1127,18 @@ def parse_pool(pool, input_layer_name, pool_conf):
def
parse_spp
(
spp
,
input_layer_name
,
spp_conf
):
parse_image
(
spp
,
input_layer_name
,
spp_conf
.
image_conf
)
spp_conf
.
pool_type
=
spp
.
pool_type
config_assert
(
spp
.
pool_type
in
[
'max-projection'
,
'avg-projection'
],
"pool-type %s is not in "
"['max-projection', 'avg-projection']"
%
spp
.
pool_type
)
spp_conf
.
pyramid_height
=
spp
.
pyramid_height
spp_conf
.
channels
=
spp
.
channels
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
spp_conf
.
channels
spp_conf
.
img_size
=
default
(
spp
.
img_width
,
int
(
img_pixels
**
0.5
))
spp_conf
.
img_size_y
=
img_pixels
/
spp_conf
.
img_size
config_assert
(
spp_conf
.
img_size
*
spp_conf
.
img_size_y
==
img_pixels
,
"Incorrect input image size %d for input image pixels %d"
%
(
spp_conf
.
img_size
,
img_pixels
))
def
parse_image
(
image
,
input_layer_name
,
image_conf
):
image_conf
.
channels
=
image
.
channels
image_pixels
=
g_layer_map
[
input_layer_name
].
size
/
image_conf
.
channels
image_conf
.
img_size
=
int
(
image_pixels
**
0.5
)
config_assert
((
image_conf
.
img_size
**
2
)
==
image_pixels
,
"Incorrect input image size %d for input image pixels %d"
%
(
image_conf
.
img_size
,
image_pixels
))
image_conf
.
img_size
,
image_conf
.
img_size_y
=
\
get_img_size
(
input_layer_name
,
image_conf
.
channels
)
def
parse_norm
(
norm
,
input_layer_name
,
norm_conf
):
...
...
@@ -1162,24 +1152,18 @@ def parse_norm(norm, input_layer_name, norm_conf):
norm_conf
.
pow
=
norm
.
pow
norm_conf
.
blocked
=
norm
.
blocked
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
norm
.
channels
norm_conf
.
img_size
=
int
(
img_pixels
**
0.5
)
config_assert
((
norm_conf
.
img_size
**
2
)
==
img_pixels
,
"Incorrect input image size %d for input image pixels %d"
%
(
norm_conf
.
img_size
,
img_pixels
))
norm_conf
.
img_size
,
norm_conf
.
img_size_y
=
\
get_img_size
(
input_layer_name
,
norm
.
channels
)
norm_conf
.
output_x
=
norm_conf
.
img_size
norm_conf
.
output_y
=
norm_conf
.
img_size_y
if
norm
.
norm_type
in
[
'cmrnorm-projection'
]:
norm_conf
.
scale
/=
norm
.
size
else
:
norm_conf
.
scale
/=
norm
.
size
**
2
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
#caffe_mode: compute the output size using floor instead of ceil,
# which is consistent of caffe and CuDNN's convention.
def
parse_conv
(
conv
,
input_layer_name
,
conv_conf
,
num_filters
,
trans
=
False
):
conv_conf
.
filter_size
=
conv
.
filter_size
conv_conf
.
filter_size_y
=
conv
.
filter_size_y
...
...
@@ -1193,33 +1177,24 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
if
not
trans
:
conv_conf
.
filter_channels
=
conv
.
channels
/
conv
.
groups
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
g_layer_map
[
input_layer_name
].
size
))
conv_conf
.
img_size
=
int
(
img_pixels
**
0.5
)
config_assert
((
conv_conf
.
img_size
**
2
)
==
img_pixels
,
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
img_size
,
img_pixels
))
conv_conf
.
img_size
,
conv_conf
.
img_size_y
=
\
get_img_size
(
input_layer_name
,
conv
.
channels
)
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
conv_conf
.
output_y
=
cnn_output_size
(
conv_conf
.
img_size_y
,
conv_conf
.
filter_size_y
,
conv_conf
.
padding_y
,
conv_conf
.
stride_y
,
conv_conf
.
caffe_mode
)
else
:
conv_conf
.
filter_channels
=
num_filters
/
conv
.
groups
outputSize
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
g_layer_map
[
input_layer_name
].
size
))
conv_conf
.
output_x
=
int
(
outputSize
**
0.5
)
config_assert
((
conv_conf
.
output_x
**
2
)
==
outputSize
,
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
output_x
,
outputSize
))
conv_conf
.
output_x
,
conv_conf
.
output_y
=
\
get_img_size
(
input_layer_name
,
conv
.
channels
)
conv_conf
.
img_size
=
cnn_image_size
(
conv_conf
.
output_x
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
conv_conf
.
img_size_y
=
cnn_image_size
(
conv_conf
.
output_y
,
conv_conf
.
filter_size_y
,
conv_conf
.
padding_y
,
conv_conf
.
stride_y
,
conv_conf
.
caffe_mode
)
def
parse_block_expand
(
block_expand
,
input_layer_name
,
block_expand_conf
):
...
...
@@ -1248,10 +1223,8 @@ def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
def
parse_maxout
(
maxout
,
input_layer_name
,
maxout_conf
):
maxout_conf
.
channels
=
maxout
.
channels
parse_image
(
maxout
,
input_layer_name
,
maxout_conf
.
image_conf
)
maxout_conf
.
groups
=
maxout
.
groups
maxout_conf
.
img_size_x
=
maxout
.
img_size_x
maxout_conf
.
img_size_y
=
maxout
.
img_size_y
# Define an evaluator
...
...
@@ -1378,6 +1351,12 @@ class LayerBase(object):
g_current_submodel
.
layer_names
.
append
(
self
.
config
.
name
)
if
self
.
config
.
type
!=
'data'
and
g_pass_height_width
:
height
=
self
.
get_input_layer
(
0
).
height
width
=
self
.
get_input_layer
(
0
).
width
if
height
and
width
:
self
.
set_layer_height_width
(
height
,
width
)
def
get_input_layer
(
self
,
input_index
):
return
g_layer_map
[
self
.
config
.
inputs
[
input_index
].
input_layer_name
]
...
...
@@ -1495,6 +1474,23 @@ class LayerBase(object):
'Different inputs result in'
+
'different layer size at layer %s'
%
self
.
config
.
name
)
def
set_layer_height_width
(
self
,
height
,
width
):
self
.
config
.
height
=
height
self
.
config
.
width
=
width
def
set_cnn_layer
(
self
,
input_layer_name
,
height
,
width
,
channels
,
is_print
=
True
):
size
=
height
*
width
*
channels
self
.
set_layer_size
(
size
)
self
.
set_layer_height_width
(
height
,
width
)
if
is_print
:
print
(
"output for %s: c = %d, h = %d, w = %d, size = %d"
%
(
input_layer_name
,
channels
,
height
,
width
,
size
))
@
config_layer
(
'multi_class_cross_entropy_with_selfnorm'
)
class
MultiClassCrossEntropySelfNormCostLayer
(
LayerBase
):
...
...
@@ -1584,9 +1580,11 @@ class PrintLayer(LayerBase):
@
config_layer
(
'data'
)
class
DataLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
device
=
None
):
def
__init__
(
self
,
name
,
size
,
height
=
None
,
width
=
None
,
device
=
None
):
super
(
DataLayer
,
self
).
__init__
(
name
,
'data'
,
size
,
inputs
=
[],
device
=
device
)
if
height
and
width
:
self
.
set_layer_height_width
(
height
,
width
)
'''
...
...
@@ -1685,14 +1683,13 @@ class ConvLayerBase(LayerBase):
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
conv_conf
,
num_filters
)
psize
=
self
.
calc_parameter_size
(
conv_conf
)
print
(
"output size for %s is %d "
%
(
name
,
conv_conf
.
output_x
))
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_
layer_size
(
(
conv_conf
.
output_x
**
2
)
*
self
.
config
.
num_filters
)
self
.
set_
cnn_layer
(
name
,
conv_conf
.
output_y
,
conv_conf
.
output_x
,
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
if
shared_biases
:
...
...
@@ -1779,10 +1776,11 @@ class NormLayer(LayerBase):
name
,
'norm'
,
0
,
inputs
=
inputs
,
device
=
device
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_norm
(
self
.
inputs
[
input_index
].
norm
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
norm_conf
)
norm_conf
=
self
.
config
.
inputs
[
input_index
].
norm_conf
self
.
set_layer_size
((
norm_conf
.
output_x
**
2
)
*
norm_conf
.
channels
)
parse_norm
(
self
.
inputs
[
input_index
].
norm
,
input_layer
.
name
,
norm_conf
)
self
.
set_cnn_layer
(
name
,
norm_conf
.
output_y
,
norm_conf
.
output_x
,
norm_conf
.
channels
,
False
)
@
config_layer
(
'pool'
)
...
...
@@ -1792,13 +1790,11 @@ class PoolLayer(LayerBase):
name
,
'pool'
,
0
,
inputs
=
inputs
,
device
=
device
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_pool
(
self
.
inputs
[
input_index
].
pool
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
pool_conf
)
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
p
rint
(
"output size for %s is %d*%d "
%
(
name
,
pool_conf
.
output_y
,
pool_conf
.
output_x
)
)
self
.
set_
layer_size
(
(
pool_conf
.
output_x
*
pool_conf
.
output_y
)
*
pool_conf
.
channels
)
p
arse_pool
(
self
.
inputs
[
input_index
].
pool
,
input_layer
.
name
,
pool_conf
)
self
.
set_
cnn_layer
(
name
,
pool_conf
.
output_y
,
pool_conf
.
output_x
,
pool_conf
.
channels
)
@
config_layer
(
'spp'
)
...
...
@@ -1808,12 +1804,10 @@ class SpatialPyramidPoolLayer(LayerBase):
name
,
'spp'
,
0
,
inputs
=
inputs
,
device
=
device
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_spp
(
self
.
inputs
[
input_index
].
spp
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
spp_conf
)
spp_conf
=
self
.
config
.
inputs
[
input_index
].
spp_conf
output_size
=
(
pow
(
4
,
spp_conf
.
pyramid_height
)
-
1
)
/
(
4
-
1
)
print
(
"output size for %s is %d "
%
(
name
,
output_size
)
)
self
.
set_
layer_size
(
output_size
*
spp
_conf
.
channels
)
parse_spp
(
self
.
inputs
[
input_index
].
spp
,
input_layer
.
name
,
spp_conf
)
output_x
=
(
pow
(
4
,
spp_conf
.
pyramid_height
)
-
1
)
/
(
4
-
1
)
self
.
set_
cnn_layer
(
name
,
1
,
output_x
,
spp_conf
.
image
_conf
.
channels
)
@
config_layer
(
'batch_norm'
)
...
...
@@ -1875,10 +1869,10 @@ class BatchNormLayer(LayerBase):
self
.
config
.
moving_average_fraction
=
moving_average_fraction
input_layer
=
self
.
get_input_layer
(
0
)
parse_image
(
self
.
inputs
[
0
].
image
,
input_layer
.
name
,
self
.
config
.
inputs
[
0
].
image_conf
)
image_conf
=
self
.
config
.
inputs
[
0
].
image_conf
self
.
set_layer_size
((
image_conf
.
img_size
**
2
)
*
image_conf
.
channels
)
parse_image
(
self
.
inputs
[
0
].
image
,
input_layer
.
name
,
image_conf
)
self
.
set_cnn_layer
(
name
,
image_conf
.
img_size_y
,
image_conf
.
img_size
,
image_conf
.
channels
)
psize
=
self
.
calc_parameter_size
(
image_conf
)
dims
=
[
1
,
psize
]
...
...
@@ -1936,11 +1930,11 @@ class MaxOutLayer(LayerBase):
super
(
MaxOutLayer
,
self
).
__init__
(
name
,
'maxout'
,
0
,
inputs
=
inputs
,
**
xargs
)
input_layer
=
self
.
get_input_layer
(
0
)
parse_maxout
(
self
.
inputs
[
0
].
maxout
,
input_layer
.
name
,
self
.
config
.
inputs
[
0
].
maxout_conf
)
maxout_conf
=
self
.
config
.
inputs
[
0
].
maxout_conf
self
.
set_layer_size
(
g_layer_map
[
input_layer
.
name
].
size
/
maxout_conf
.
groups
)
parse_maxout
(
self
.
inputs
[
0
].
maxout
,
input_layer
.
name
,
maxout_conf
)
out_channels
=
maxout_conf
.
image_conf
.
channels
/
maxout_conf
.
groups
self
.
set_cnn_layer
(
name
,
g_layer_map
[
input_layer
.
name
].
height
,
g_layer_map
[
input_layer
.
name
].
width
,
out_channels
)
# key: cost type
...
...
@@ -2520,11 +2514,10 @@ class BilinearInterpLayer(LayerBase):
super
(
BilinearInterpLayer
,
self
).
__init__
(
name
,
'bilinear_interp'
,
0
,
inputs
=
inputs
,
**
xargs
)
input_layer
=
self
.
get_input_layer
(
0
)
parse_bilinear
(
self
.
inputs
[
0
].
bilinear_interp
,
input_layer
.
name
,
self
.
config
.
inputs
[
0
].
bilinear_interp_conf
)
conf
=
self
.
inputs
[
0
].
bilinear_interp
self
.
set_layer_size
(
conf
.
out_size_x
*
conf
.
out_size_y
*
conf
.
num_channels
)
conf
=
self
.
config
.
inputs
[
0
].
bilinear_interp_conf
parse_bilinear
(
self
.
inputs
[
0
].
bilinear_interp
,
input_layer
.
name
,
conf
)
self
.
set_cnn_layer
(
name
,
conf
.
out_size_y
,
conf
.
out_size_x
,
conf
.
image_conf
.
channels
)
@
config_layer
(
'sum_to_one_norm'
)
...
...
@@ -2997,6 +2990,8 @@ class CTCLayer(LayerBase):
@
config_layer
(
'recurrent_layer_group'
)
class
RecurrentLayerGroup
(
LayerBase
):
def
__init__
(
self
,
name
,
device
=
None
):
global
g_pass_height_width
g_pass_height_width
=
False
super
(
RecurrentLayerGroup
,
self
).
__init__
(
name
,
'recurrent_layer_group'
,
0
,
inputs
=
[],
device
=
device
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
7bb627d3
...
...
@@ -766,7 +766,7 @@ def mixed_layer(size=0,
@
layer_support
()
def
data_layer
(
name
,
size
,
layer_attr
=
None
):
def
data_layer
(
name
,
size
,
height
=
None
,
width
=
None
,
layer_attr
=
None
):
"""
Define DataLayer For NeuralNetwork.
...
...
@@ -781,6 +781,10 @@ def data_layer(name, size, layer_attr=None):
:type name: basestring
:param size: Size of this data layer.
:type size: int
:param height: Height of this data layer, used for image
:type size: int|None
:param width: Width of this data layer, used for image
:type size: int|None
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
...
...
@@ -790,6 +794,8 @@ def data_layer(name, size, layer_attr=None):
type
=
LayerType
.
DATA
,
name
=
name
,
size
=
size
,
height
=
height
,
width
=
width
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
DATA
,
size
=
size
)
...
...
@@ -1483,7 +1489,7 @@ def bilinear_interp_layer(input,
bilinear_interp
=
BilinearInterp
(
out_size_x
=
out_size_x
,
out_size_y
=
out_size_y
,
num_
channels
=
num_channels
)),
channels
=
num_channels
)),
type
=
LayerType
.
BILINEAR_INTERP_LAYER
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
...
...
@@ -1872,7 +1878,7 @@ def img_conv_layer(input,
param_attr
.
attr
[
"initial_std"
]
=
init_w
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_smart"
]
=
False
if
layer_type
:
if
trans
:
assert
layer_type
in
[
"exconvt"
]
...
...
@@ -1923,8 +1929,7 @@ def img_pool_layer(input,
layer_attr
=
None
,
pool_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
img_width
=
None
):
padding_y
=
None
):
"""
Image pooling Layer.
...
...
@@ -1955,9 +1960,6 @@ def img_pool_layer(input,
:type stride_y: int|None
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:param img_width: the width of input feature map. If it is None, the input feature
map should be square.
:type img_width: int|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -1993,8 +1995,7 @@ def img_pool_layer(input,
padding
=
padding
,
size_y
=
pool_size_y
,
stride_y
=
stride_y
,
padding_y
=
padding_y
,
img_width
=
img_width
))
padding_y
=
padding_y
))
],
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
...
...
@@ -2012,7 +2013,6 @@ def spp_layer(input,
num_channels
=
None
,
pool_type
=
None
,
pyramid_height
=
None
,
img_width
=
None
,
layer_attr
=
None
):
"""
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
...
...
@@ -2029,9 +2029,6 @@ def spp_layer(input,
:type scale: BasePoolingType
:param pyramid_height: pyramid height.
:type pyramid_height: int
:param img_width: the width of input feature map. If it is None, the input feature
map should be square.
:type img_width: int|None
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
...
...
@@ -2058,8 +2055,7 @@ def spp_layer(input,
spp
=
SpatialPyramidPool
(
pool_type
=
type_name
,
channels
=
num_channels
,
pyramid_height
=
pyramid_height
,
img_width
=
img_width
)),
pyramid_height
=
pyramid_height
)),
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
浏览文件 @
7bb627d3
...
...
@@ -26,11 +26,15 @@ layers {
filter_size_y: 32
padding_y: 1
stride_y: 1
output_y: 227
img_size_y: 256
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 64
shared_biases: true
height: 227
width: 227
}
layers {
name: "__batch_norm_0__"
...
...
@@ -43,6 +47,7 @@ layers {
image_conf {
channels: 64
img_size: 227
img_size_y: 227
}
}
inputs {
...
...
@@ -55,6 +60,8 @@ layers {
}
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.9
height: 227
width: 227
}
layers {
name: "__crmnorm_0__"
...
...
@@ -72,8 +79,12 @@ layers {
output_x: 227
img_size: 227
blocked: false
output_y: 227
img_size_y: 227
}
}
height: 227
width: 227
}
layers {
name: "__pool_0__"
...
...
@@ -97,6 +108,8 @@ layers {
padding_y: 0
}
}
height: 196
width: 196
}
parameters {
name: "___conv_0__.w0"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
浏览文件 @
7bb627d3
...
...
@@ -26,6 +26,8 @@ layers {
filter_size_y: 32
padding_y: 1
stride_y: 1
output_y: 227
img_size_y: 256
}
}
bias_parameter_name: "___conv_0__.wbias"
...
...
@@ -43,6 +45,7 @@ layers {
image_conf {
channels: 64
img_size: 256
img_size_y: 256
}
}
inputs {
...
...
@@ -55,6 +58,8 @@ layers {
}
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.9
height: 256
width: 256
}
layers {
name: "__crmnorm_0__"
...
...
@@ -72,8 +77,12 @@ layers {
output_x: 256
img_size: 256
blocked: false
output_y: 256
img_size_y: 256
}
}
height: 256
width: 256
}
layers {
name: "__pool_0__"
...
...
@@ -97,6 +106,8 @@ layers {
padding_y: 0
}
}
height: 225
width: 225
}
parameters {
name: "___conv_0__.w0"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
浏览文件 @
7bb627d3
...
...
@@ -177,6 +177,8 @@ layers {
filter_size_y: 3
padding_y: 0
stride_y: 1
output_y: 30
img_size_y: 32
}
num_filters: 64
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
浏览文件 @
7bb627d3
...
...
@@ -26,11 +26,15 @@ layers {
filter_size_y: 3
padding_y: 1
stride_y: 1
output_y: 48
img_size_y: 48
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 16
shared_biases: true
height: 48
width: 48
}
layers {
name: "__bilinear_interp_layer_0__"
...
...
@@ -40,11 +44,17 @@ layers {
inputs {
input_layer_name: "__conv_0__"
bilinear_interp_conf {
image_conf {
channels: 16
img_size: 48
img_size_y: 48
}
out_size_x: 64
out_size_y: 64
num_channels: 16
}
}
height: 64
width: 64
}
layers {
name: "__pool_0__"
...
...
@@ -55,19 +65,21 @@ layers {
input_layer_name: "__bilinear_interp_layer_0__"
pool_conf {
pool_type: "max-projection"
channels:
4
channels:
16
size_x: 2
stride: 2
output_x:
64
img_size:
128
output_x:
32
img_size:
64
padding: 0
size_y: 2
stride_y: 2
output_y:
64
img_size_y:
128
output_y:
32
img_size_y:
64
padding_y: 0
}
}
height: 32
width: 32
}
layers {
name: "__fc_layer_0__"
...
...
@@ -78,6 +90,8 @@ layers {
input_layer_name: "__pool_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
height: 32
width: 32
}
parameters {
name: "___conv_0__.w0"
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
浏览文件 @
7bb627d3
...
...
@@ -4,6 +4,8 @@ layers {
type: "data"
size: 2304
active_type: ""
height: 48
width: 48
}
layers {
name: "__conv_0__"
...
...
@@ -26,11 +28,15 @@ layers {
filter_size_y: 3
padding_y: 1
stride_y: 1
output_y: 48
img_size_y: 48
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 16
shared_biases: true
height: 48
width: 48
}
layers {
name: "__maxout_layer_0__"
...
...
@@ -40,12 +46,16 @@ layers {
inputs {
input_layer_name: "__conv_0__"
maxout_conf {
channels: 16
image_conf {
channels: 16
img_size: 48
img_size_y: 48
}
groups: 2
img_size_x: 0
img_size_y: 0
}
}
height: 48
width: 48
}
layers {
name: "__pool_0__"
...
...
@@ -69,48 +79,58 @@ layers {
padding_y: 0
}
}
height: 24
width: 24
}
layers {
name: "__conv_1__"
type: "exconv"
size:
18432
size:
73728
active_type: ""
inputs {
input_layer_name: "__pool_0__"
input_parameter_name: "___conv_1__.w0"
conv_conf {
filter_size: 3
channels:
32
channels:
8
stride: 1
padding: 1
groups: 1
filter_channels:
32
output_x:
12
img_size:
12
filter_channels:
8
output_x:
24
img_size:
24
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 1
output_y: 24
img_size_y: 24
}
}
bias_parameter_name: "___conv_1__.wbias"
num_filters: 128
shared_biases: true
height: 24
width: 24
}
layers {
name: "__maxout_layer_1__"
type: "maxout"
size:
9216
size:
18432
active_type: ""
inputs {
input_layer_name: "__conv_
0
__"
input_layer_name: "__conv_
1
__"
maxout_conf {
channels: 128
image_conf {
channels: 128
img_size: 24
img_size_y: 24
}
groups: 4
img_size_x: 0
img_size_y: 0
}
}
height: 24
width: 24
}
layers {
name: "__block_expand_layer_0__"
...
...
@@ -118,7 +138,7 @@ layers {
size: 192
active_type: ""
inputs {
input_layer_name: "__maxout_layer_
0
__"
input_layer_name: "__maxout_layer_
1
__"
block_expand_conf {
channels: 32
stride_x: 1
...
...
@@ -133,6 +153,8 @@ layers {
img_size_y: 0
}
}
height: 24
width: 24
}
layers {
name: "__fc_layer_0__"
...
...
@@ -143,6 +165,8 @@ layers {
input_layer_name: "__block_expand_layer_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
height: 24
width: 24
}
parameters {
name: "___conv_0__.w0"
...
...
@@ -164,9 +188,9 @@ parameters {
}
parameters {
name: "___conv_1__.w0"
size:
36864
size:
9216
initial_mean: 0.0
initial_std: 0.
0833333333333
initial_std: 0.
166666666667
initial_strategy: 0
initial_smart: false
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_spp_layer.protostr
浏览文件 @
7bb627d3
...
...
@@ -4,6 +4,8 @@ layers {
type: "data"
size: 3200
active_type: ""
height: 20
width: 10
}
layers {
name: "__spp_0__"
...
...
@@ -13,13 +15,17 @@ layers {
inputs {
input_layer_name: "data"
spp_conf {
image_conf {
channels: 16
img_size: 10
img_size_y: 20
}
pool_type: "max-projection"
pyramid_height: 2
channels: 16
img_size: 10
img_size_y: 20
}
}
height: 1
width: 5
}
input_layer_names: "data"
output_layer_names: "__spp_0__"
...
...
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
浏览文件 @
7bb627d3
...
...
@@ -17,7 +17,7 @@ bilinear = bilinear_interp_layer(input=conv, out_size_x=64, out_size_y=64)
pool
=
img_pool_layer
(
input
=
bilinear
,
num_channels
=
4
,
num_channels
=
16
,
pool_size
=
2
,
stride
=
2
,
pool_type
=
MaxPooling
())
...
...
python/paddle/trainer_config_helpers/tests/configs/test_maxout.py
浏览文件 @
7bb627d3
...
...
@@ -2,7 +2,7 @@ from paddle.trainer_config_helpers import *
settings
(
batch_size
=
1000
,
learning_rate
=
1e-5
)
data
=
data_layer
(
name
=
'data'
,
size
=
2304
)
data
=
data_layer
(
name
=
'data'
,
size
=
2304
,
height
=
48
,
width
=
48
)
conv
=
img_conv_layer
(
input
=
data
,
...
...
@@ -21,16 +21,21 @@ pool = img_pool_layer(
conv2
=
img_conv_layer
(
input
=
pool
,
filter_size
=
3
,
num_channels
=
32
,
num_channels
=
8
,
num_filters
=
128
,
padding
=
1
,
act
=
LinearActivation
(),
bias_attr
=
True
)
maxout2
=
maxout_layer
(
input
=
conv
,
num_channels
=
128
,
groups
=
4
)
maxout2
=
maxout_layer
(
input
=
conv
2
,
num_channels
=
128
,
groups
=
4
)
block
=
block_expand_layer
(
input
=
maxout
,
num_channels
=
32
,
stride_x
=
1
,
stride_y
=
1
,
block_x
=
1
,
block_y
=
6
)
input
=
maxout2
,
num_channels
=
32
,
stride_x
=
1
,
stride_y
=
1
,
block_x
=
1
,
block_y
=
6
)
fc
=
fc_layer
(
input
=
block
,
size
=
384
,
bias_attr
=
False
)
...
...
python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py
浏览文件 @
7bb627d3
...
...
@@ -2,13 +2,9 @@ from paddle.trainer_config_helpers import *
settings
(
batch_size
=
100
,
learning_rate
=
1e-5
)
data
=
data_layer
(
name
=
'data'
,
size
=
3200
)
data
=
data_layer
(
name
=
'data'
,
size
=
3200
,
height
=
20
,
width
=
10
)
spp
=
spp_layer
(
input
=
data
,
pyramid_height
=
2
,
num_channels
=
16
,
pool_type
=
MaxPooling
(),
img_width
=
10
)
input
=
data
,
pyramid_height
=
2
,
num_channels
=
16
,
pool_type
=
MaxPooling
())
outputs
(
spp
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录