Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7b828f71
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7b828f71
编写于
5月 11, 2022
作者:
T
taixiurong
提交者:
GitHub
5月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove old XDNN implementation test=kunlun (#42404)
上级
a1abb7c9
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
459 addition
and
380 deletion
+459
-380
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+2
-2
paddle/fluid/framework/data_type_transform.cc
paddle/fluid/framework/data_type_transform.cc
+76
-1
paddle/fluid/operators/log_loss_op_xpu.cc
paddle/fluid/operators/log_loss_op_xpu.cc
+51
-42
paddle/fluid/operators/metrics/accuracy_op_xpu.cc
paddle/fluid/operators/metrics/accuracy_op_xpu.cc
+19
-61
paddle/fluid/operators/optimizers/lamb_op_xpu.cc
paddle/fluid/operators/optimizers/lamb_op_xpu.cc
+96
-86
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
+112
-103
paddle/fluid/operators/optimizers/sgd_op_xpu.cc
paddle/fluid/operators/optimizers/sgd_op_xpu.cc
+28
-31
paddle/fluid/platform/device/xpu/xpu1_op_list.h
paddle/fluid/platform/device/xpu/xpu1_op_list.h
+0
-5
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+2
-0
python/paddle/fluid/tests/unittests/xpu/test_accuracy_op_xpu.py
.../paddle/fluid/tests/unittests/xpu/test_accuracy_op_xpu.py
+42
-31
python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py
+31
-18
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
7b828f71
...
...
@@ -9,7 +9,7 @@ SET(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
SET
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20220
425
"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20220
510
"
)
else
()
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
@@ -17,7 +17,7 @@ endif()
# ubuntu and centos: use output by XDNN API team
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
SET
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
SET
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/20220
425
"
)
SET
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/20220
510
"
)
else
()
SET
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
endif
()
...
...
paddle/fluid/framework/data_type_transform.cc
浏览文件 @
7b828f71
...
...
@@ -18,6 +18,10 @@ limitations under the License. */
#include "paddle/fluid/framework/selected_rows_utils.h"
#include "paddle/fluid/platform/transform.h"
#if defined(PADDLE_WITH_XPU)
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -28,6 +32,49 @@ struct CastDataTypeFunctor {
}
};
#if defined(PADDLE_WITH_XPU)
template
<
typename
InType
,
typename
OutType
>
static
void
XPUCastData
(
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
const
platform
::
XPUDeviceContext
*
dev_ctx
)
{
using
XPUInTDType
=
typename
XPUTypeTrait
<
InType
>::
Type
;
using
XPUOutTDType
=
typename
XPUTypeTrait
<
OutType
>::
Type
;
int
r
=
xpu
::
cast_v2
<
XPUInTDType
,
XPUOutTDType
>
(
dev_ctx
->
x_context
(),
reinterpret_cast
<
const
XPUInTDType
*>
(
in
.
data
<
InType
>
()),
reinterpret_cast
<
XPUOutTDType
*>
(
out
->
mutable_data
<
OutType
>
(
in
.
place
())),
in
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
dev_ctx
->
Wait
();
}
template
<
typename
InType
>
static
void
XPUTransDataType
(
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
const
paddle
::
framework
::
proto
::
VarType
::
Type
&
dst_type
,
const
platform
::
DeviceContext
*
ctx
)
{
auto
*
context
=
static_cast
<
const
platform
::
XPUDeviceContext
*>
(
ctx
);
#define XPUCastCallback(cpp_type, proto_type) \
do { \
if (dst_type == proto_type) { \
XPUCastData<InType, cpp_type>(in, out, context); \
} \
} while (0)
if
(
dst_type
==
proto
::
VarType
::
FP32
&&
dst_type
==
proto
::
VarType
::
FP16
&&
dst_type
==
proto
::
VarType
::
BOOL
&&
dst_type
==
proto
::
VarType
::
INT16
&&
dst_type
==
proto
::
VarType
::
INT32
&&
dst_type
==
proto
::
VarType
::
INT64
)
{
_ForEachDataType_
(
XPUCastCallback
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported in XPU when casting data type."
,
DataTypeToString
(
dst_type
)));
}
}
#endif
template
<
typename
InType
>
struct
CastDataType
{
CastDataType
(
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
...
...
@@ -88,6 +135,34 @@ void TransDataType(const Tensor& in,
auto
dst_type
=
type
;
auto
ctx
=
pool
.
Get
(
in
.
place
());
#if defined(PADDLE_WITH_XPU)
switch
(
src_type
)
{
case
proto
::
VarType
::
FP16
:
XPUTransDataType
<
platform
::
float16
>
(
in
,
out
,
dst_type
,
ctx
);
break
;
case
proto
::
VarType
::
FP32
:
XPUTransDataType
<
float
>
(
in
,
out
,
dst_type
,
ctx
);
break
;
case
proto
::
VarType
::
BOOL
:
XPUTransDataType
<
bool
>
(
in
,
out
,
dst_type
,
ctx
);
break
;
case
proto
::
VarType
::
INT16
:
XPUTransDataType
<
int16_t
>
(
in
,
out
,
dst_type
,
ctx
);
break
;
case
proto
::
VarType
::
INT32
:
XPUTransDataType
<
int
>
(
in
,
out
,
dst_type
,
ctx
);
break
;
case
proto
::
VarType
::
INT64
:
XPUTransDataType
<
int64_t
>
(
in
,
out
,
dst_type
,
ctx
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported in XPU when casting data type."
,
DataTypeToString
(
src_type
)));
}
#else
switch
(
src_type
)
{
case
proto
::
VarType
::
FP16
:
framework
::
VisitDataType
(
dst_type
,
...
...
@@ -123,6 +198,7 @@ void TransDataType(const Tensor& in,
"Data type (%s) is not supported when casting data type."
,
DataTypeToString
(
src_type
)));
}
#endif
}
void
TransComplexToReal
(
const
proto
::
VarType
::
Type
&
dst_type
,
...
...
@@ -131,7 +207,6 @@ void TransComplexToReal(const proto::VarType::Type& dst_type,
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
ctx
=
pool
.
Get
(
in
.
place
());
out
->
Resize
(
in
.
dims
());
// complex -> real
switch
(
src_type
)
{
case
proto
::
VarType
::
COMPLEX64
:
...
...
paddle/fluid/operators/log_loss_op_xpu.cc
浏览文件 @
7b828f71
...
...
@@ -21,58 +21,67 @@ template <typename DeviceContext, typename T, typename AttrType = T>
class
LogLossXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
predict
=
ctx
.
Input
<
Tensor
>
(
"Predicted"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Labels"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
AttrType
>
(
"epsilon"
));
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
n
=
predict
->
numel
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
log_loss_fwd
(
dev_ctx
.
x_context
(),
n
,
epsilon
,
predict
->
data
<
T
>
(),
labels
->
data
<
T
>
(),
loss
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU log_loss kernel return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed."
,
r
));
/*** TODO wait XDNN new interface
auto* predict = ctx.Input<Tensor>("Predicted");
auto* labels = ctx.Input<Tensor>("Labels");
auto* loss = ctx.Output<Tensor>("Loss");
auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));
loss->mutable_data<T>(ctx.GetPlace());
int n = predict->numel();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r =
xpu::log_loss_fwd(dev_ctx.x_context(), n, epsilon,
predict->data<T>(),
labels->data<T>(), loss->data<T>());
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External(
"XPU log_loss kernel return wrong value[%d], please check
whether "
"Baidu Kunlun Card is properly installed.",
r));
***/
}
};
template
<
typename
DeviceContext
,
typename
T
,
typename
AttrType
=
T
>
class
LogLossGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
predict
=
ctx
.
Input
<
Tensor
>
(
"Predicted"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Labels"
);
auto
*
dloss
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
dpred
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Predicted"
));
if
(
!
dpred
)
{
return
;
}
auto
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
AttrType
>
(
"epsilon"
));
dpred
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
n
=
predict
->
numel
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
log_loss_bwd
(
dev_ctx
.
x_context
(),
n
,
epsilon
,
predict
->
data
<
T
>
(),
labels
->
data
<
T
>
(),
dloss
->
data
<
T
>
(),
dpred
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU log_loss kernel return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed."
,
r
));
/*** TODO wait XDNN new interface
auto* predict = ctx.Input<Tensor>("Predicted");
auto* labels = ctx.Input<Tensor>("Labels");
auto* dloss = ctx.Input<Tensor>(framework::GradVarName("Loss"));
auto* dpred = ctx.Output<Tensor>(framework::GradVarName("Predicted"));
if (!dpred) {
return;
}
auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));
dpred->mutable_data<T>(ctx.GetPlace());
int n = predict->numel();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::log_loss_bwd(dev_ctx.x_context(), n, epsilon,
predict->data<T>(), labels->data<T>(),
dloss->data<T>(), dpred->data<T>());
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External(
"XPU log_loss kernel return wrong value[%d], please check
whether "
"Baidu Kunlun Card is properly installed.",
r));
***/
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
log_loss
,
ops
::
LogLossXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
log_loss_grad
,
ops
::
LogLossGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
// namespace ops = paddle::operators;
// REGISTER_OP_XPU_KERNEL(
// log_loss, ops::LogLossXPUKernel<paddle::platform::XPUDeviceContext,
// float>);
// REGISTER_OP_XPU_KERNEL(
// log_loss_grad,
// ops::LogLossGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
paddle/fluid/operators/metrics/accuracy_op_xpu.cc
浏览文件 @
7b828f71
...
...
@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device/
xpu/xpu_head
er.h"
#include "paddle/fluid/platform/device/
device_wrapp
er.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -42,68 +42,26 @@ class AccuracyXPUKernel : public framework::OpKernel<T> {
if
(
num_samples
==
0
)
{
return
;
}
size_t
indices_int32_size
=
num_samples
*
class_dim
*
sizeof
(
int
);
size_t
indices_int64_size
=
num_samples
*
class_dim
*
sizeof
(
int64_t
);
size_t
label_int32_size
=
num_samples
*
sizeof
(
int
);
size_t
label_int64_size
=
num_samples
*
sizeof
(
int64_t
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
*
indices_int32_device
=
NULL
;
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
indices_int32_device
),
indices_int32_size
),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"
\n\n
Out of memory error on XPU, Cannot allocate %s memory"
" on XPU.
\n\n
Please check whether there is any other process "
"using XPU.
\n
"
,
string
::
HumanReadableSize
(
indices_int32_size
)));
int
*
label_int32_device
=
NULL
;
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
label_int32_device
),
label_int32_size
),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"
\n\n
Out of memory error on XPU, Cannot allocate %s memory"
" on XPU.
\n\n
Please check whether there is any other process "
"using XPU.
\n
"
,
string
::
HumanReadableSize
(
label_int32_size
)));
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
size
=
num_samples
*
class_dim
;
int
*
indices_int32_ptr
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
size
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
indices_int32_ptr
);
int
*
label_int32_ptr
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
size
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
label_int32_ptr
);
int
*
indices_int32_host
=
reinterpret_cast
<
int
*>
(
std
::
malloc
(
indices_int32_size
));
int64_t
*
indices_int64_host
=
reinterpret_cast
<
int64_t
*>
(
std
::
malloc
(
indices_int64_size
));
int
*
label_int32_host
=
reinterpret_cast
<
int
*>
(
std
::
malloc
(
label_int32_size
));
int64_t
*
label_int64_host
=
reinterpret_cast
<
int64_t
*>
(
std
::
malloc
(
label_int64_size
));
dev_ctx
.
Wait
();
memory
::
Copy
(
platform
::
CPUPlace
(),
indices_int64_host
,
ctx
.
GetPlace
(),
indices_data
,
indices_int64_size
);
memory
::
Copy
(
platform
::
CPUPlace
(),
label_int64_host
,
ctx
.
GetPlace
(),
label_data
,
label_int64_size
);
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
label_int32_host
[
i
]
=
label_int64_host
[
i
];
for
(
size_t
j
=
0
;
j
<
class_dim
;
++
j
)
{
indices_int32_host
[
i
*
class_dim
+
j
]
=
indices_int64_host
[
i
*
class_dim
+
j
];
}
}
memory
::
Copy
(
ctx
.
GetPlace
(),
indices_int32_device
,
platform
::
CPUPlace
(),
indices_int32_host
,
indices_int32_size
);
memory
::
Copy
(
ctx
.
GetPlace
(),
label_int32_device
,
platform
::
CPUPlace
(),
label_int32_host
,
label_int32_size
);
int
r
=
xpu
::
accuracy
(
dev_ctx
.
x_context
(),
indices_int32_device
,
label_int32_device
,
num_samples
,
class_dim
,
correct_data
,
total_data
,
accuracy_data
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Fatal
(
"XPU accuracy kernel error!"
));
dev_ctx
.
Wait
();
xpu_free
(
indices_int32_device
);
xpu_free
(
label_int32_device
);
std
::
free
(
indices_int32_host
);
std
::
free
(
indices_int64_host
);
std
::
free
(
label_int32_host
);
std
::
free
(
label_int64_host
);
int
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
indices_data
,
indices_int32_ptr
,
size
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
label_data
,
label_int32_ptr
,
size
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
r
=
xpu
::
accuracy
(
dev_ctx
.
x_context
(),
indices_int32_ptr
,
label_int32_ptr
,
num_samples
,
class_dim
,
correct_data
,
total_data
,
accuracy_data
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast_v2"
);
}
};
...
...
paddle/fluid/operators/optimizers/lamb_op_xpu.cc
浏览文件 @
7b828f71
...
...
@@ -25,101 +25,111 @@ template <typename DeviceContext, typename T>
class
LambOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
paddle
::
framework
::
LoDTensor
;
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
/*** TODO wait XDNN new interface
using paddle::framework::LoDTensor;
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
using
paddle
::
framework
::
LoDTensor
;
using paddle::framework::LoDTensor;
// inputs
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
weight_decay
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"weight_decay"
));
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
auto
&
param
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Input"
,
"Param"
,
"Lamb"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
&
mom1
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment1"
),
"Input"
,
"Moment1"
,
"Lamb"
);
auto
&
mom2
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment2"
),
"Input"
,
"Moment2"
,
"Lamb"
);
auto
&
lr
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
),
"Input"
,
"LearningRate"
,
"Lamb"
);
// inputs
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
T weight_decay = static_cast<T>(ctx.Attr<float>("weight_decay"));
T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
auto& param = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Param"), "Input",
"Param", "Lamb");
auto* grad_var = ctx.InputVar("Grad");
auto& mom1 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment1"), "Input",
"Moment1", "Lamb");
auto& mom2 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment2"), "Input",
"Moment2", "Lamb");
auto& lr = GET_DATA_SAFELY(ctx.Input<LoDTensor>("LearningRate"),
"Input",
"LearningRate", "Lamb");
auto
&
beta1_pow
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Beta1Pow"
),
"Input"
,
"Beta1Pow"
,
"Lamb"
);
auto
&
beta2_pow
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Beta2Pow"
),
"Input"
,
"Beta2Pow"
,
"Lamb"
);
auto& beta1_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta1Pow"),
"Input",
"Beta1Pow", "Lamb");
auto& beta2_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta2Pow"),
"Input",
"Beta2Pow", "Lamb");
auto
&
param_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Lamb"
);
auto
&
mom1_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Moment1Out"
),
"Output"
,
"Moment1Out"
,
"Lamb"
);
auto
&
mom2_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
),
"Output"
,
"Moment2Out"
,
"Lamb"
);
auto
&
beta1_pow_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Beta1PowOut"
),
"Output"
,
"Beta1PowOut"
,
"Lamb"
);
auto
&
beta2_pow_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Beta2PowOut"
),
"Output"
,
"Beta2PowOut"
,
"Lamb"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto& param_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("ParamOut"),
"Output", "ParamOut", "Lamb");
auto& mom1_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment1Out"),
"Output", "Moment1Out", "Lamb");
auto& mom2_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment2Out"),
"Output", "Moment2Out", "Lamb");
auto& beta1_pow_out =
GET_DATA_SAFELY(ctx.Output<LoDTensor>("Beta1PowOut"),
"Output", "Beta1PowOut", "Lamb");
auto& beta2_pow_out =
GET_DATA_SAFELY(ctx.Output<LoDTensor>("Beta2PowOut"),
"Output", "Beta2PowOut", "Lamb");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
*
ctx
.
Input
<
LoDTensor
>
(
"Grad"
);
int
r
=
xpu
::
lamb
(
dev_ctx
.
x_context
(),
grad
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom2
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
beta1
,
beta2
,
epsilon
,
weight_decay
,
lr
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
beta1_pow_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
beta2_pow_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param
.
numel
());
if (grad_var->IsType<framework::LoDTensor>()) {
auto& grad = *ctx.Input<LoDTensor>("Grad");
int r = xpu::lamb(dev_ctx.x_context(), grad.template data<T>(),
mom1.template data<T>(), mom2.template data<T>(),
param.template data<T>(), beta1_pow.template
data<T>(),
beta2_pow.template data<T>(), beta1, beta2, epsilon,
weight_decay, lr.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2_out.template mutable_data<T>(ctx.GetPlace()),
param_out.template mutable_data<T>(ctx.GetPlace()),
beta1_pow_out.template
mutable_data<T>(ctx.GetPlace()),
beta2_pow_out.template
mutable_data<T>(ctx.GetPlace()),
param.numel());
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of LambOp, error message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of LambOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of LambOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."
));
}
else
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of LambOp, error "
"message: OTHER "
"XPU API returns error code: %d."
,
r
));
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Variable type not supported by lamb_op. Expect LoDTensor, "
"but got %s"
,
framework
::
ToTypeName
(
param_var
->
Type
())));
}
if (r == xpu::Error_t::INVALID_PARAM) {
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument(
"XPU kernel error of LambOp, error message: INVALID_PARAM, "
"please check your input & output."));
} else if (r == xpu::Error_t::RUNTIME_ERROR) {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::Unavailable(
"XPU kernel error of LambOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."));
} else if (r == xpu::Error_t::NO_ENOUGH_WORKSPACE) {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::ResourceExhausted(
"XPU kernel error of LambOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."));
} else {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::ResourceExhausted(
"XPU kernel error of LambOp, error "
"message: OTHER "
"XPU API returns error code: %d.",
r));
}
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Variable type not supported by lamb_op. Expect LoDTensor, "
"but got %s",
framework::ToTypeName(param_var->Type())));
}
**/
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
lamb
,
ops
::
LambOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
//
namespace ops = paddle::operators;
//
REGISTER_OP_XPU_KERNEL(
//
lamb, ops::LambOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
paddle/fluid/operators/optimizers/rmsprop_op_xpu.cc
浏览文件 @
7b828f71
...
...
@@ -40,113 +40,122 @@ template <typename DeviceContext, typename T>
class
RmspropOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
paddle
::
framework
::
LoDTensor
;
// check Param & Grad tensor type
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
())));
// inputs
auto
&
param
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Input"
,
"Param"
,
"Rmsprop"
);
auto
&
meanSquare
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"MeanSquare"
),
"Input"
,
"MeanSquare"
,
"Rmsprop"
);
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Rmsprop"
);
auto
&
mom
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment"
),
"Input"
,
"Moment"
,
"Rmsprop"
);
auto
*
learning_rate
=
ctx
.
Input
<
Tensor
>
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
learning_rate
->
dims
().
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"learining rate should have dimension = 1."
" But received learning rate dim [%s] "
,
learning_rate
->
dims
().
size
()));
T
lr
=
static_cast
<
T
>
(
GetAttrFromTensor
(
learning_rate
));
// constants
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
decay
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"decay"
));
T
momentum
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
// outputs
auto
&
param_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Rmsprop"
);
auto
&
mom_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MomentOut"
),
"Output"
,
"MomentOut"
,
"Rmsprop"
);
auto
&
mom_sqrt_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"MeanSquareOut"
),
"Output"
,
"MeanSquareOut"
,
"Rmsprop"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
///// rmsprop优化算法
///
/// ms_out[i] = rho * ms[i] + (1 - rho) * (g[i] * g[i]);
///
/// mom_out[i] = momentum * mom[i] + lr *
/// (g[i] / ((float)sqrt(ms_out[i] + epsilon)));
///
/// p_out[i] = p[i] - mom_out[i];
/// DLL_EXPORT int rmsprop(Context* ctx, const float* p,
/// const float* ms, const float* g, const float* mom,
/// float epsilon, float rho, float momentum, float lr,
/// float *ms_out, float *mom_out, float *p_out, int n)
int
r
=
xpu
::
rmsprop
(
dev_ctx
.
x_context
(),
param
.
template
data
<
T
>(),
meanSquare
.
template
data
<
T
>(),
grad
.
template
data
<
T
>(),
mom
.
template
data
<
T
>(),
epsilon
,
decay
,
momentum
,
lr
,
mom_sqrt_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
param
.
numel
());
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of RmspropOp, error message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of RmspropOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of RmspropOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."
));
}
else
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of RmspropOp, error "
"message: OTHER "
"XPU API returns error code: %d."
,
r
));
}
/*** TODO wait XDNN new interface
using paddle::framework::LoDTensor;
// check Param & Grad tensor type
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<LoDTensor>(), true,
platform::errors::InvalidArgument(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
const auto* grad_var = ctx.InputVar("Grad");
PADDLE_ENFORCE_EQ(grad_var->IsType<LoDTensor>(), true,
platform::errors::InvalidArgument(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s",
ctx.InputNames("Grad").front(),
framework::ToTypeName(grad_var->Type())));
// inputs
auto& param = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Param"), "Input",
"Param", "Rmsprop");
auto& meanSquare = GET_DATA_SAFELY(ctx.Input<LoDTensor>("MeanSquare"),
"Input", "MeanSquare", "Rmsprop");
auto& grad = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Grad"), "Input",
"Grad",
"Rmsprop");
auto& mom = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment"), "Input",
"Moment", "Rmsprop");
auto* learning_rate = ctx.Input<Tensor>("LearningRate");
PADDLE_ENFORCE_EQ(learning_rate->dims().size(), 1,
platform::errors::InvalidArgument(
"learining rate should have dimension = 1."
" But received learning rate dim [%s] ",
learning_rate->dims().size()));
T lr = static_cast<T>(GetAttrFromTensor(learning_rate));
// constants
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
T decay = static_cast<T>(ctx.Attr<float>("decay"));
T momentum = static_cast<T>(ctx.Attr<float>("momentum"));
// outputs
auto& param_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("ParamOut"),
"Output", "ParamOut", "Rmsprop");
auto& mom_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("MomentOut"),
"Output", "MomentOut", "Rmsprop");
auto& mom_sqrt_out =
GET_DATA_SAFELY(ctx.Output<LoDTensor>("MeanSquareOut"),
"Output", "MeanSquareOut",
"Rmsprop");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
///// rmsprop优化算法
///
/// ms_out[i] = rho * ms[i] + (1 - rho) * (g[i] * g[i]);
///
/// mom_out[i] = momentum * mom[i] + lr *
/// (g[i] / ((float)sqrt(ms_out[i] + epsilon)));
///
/// p_out[i] = p[i] - mom_out[i];
/// DLL_EXPORT int rmsprop(Context* ctx, const float* p,
/// const float* ms, const float* g, const float* mom,
/// float epsilon, float rho, float momentum, float lr,
/// float *ms_out, float *mom_out, float *p_out, int n)
int r = xpu::rmsprop(dev_ctx.x_context(), param.template data<T>(),
meanSquare.template data<T>(), grad.template
data<T>(),
mom.template data<T>(), epsilon, decay, momentum,
lr,
mom_sqrt_out.template
mutable_data<T>(ctx.GetPlace()),
mom_out.template mutable_data<T>(ctx.GetPlace()),
param_out.template mutable_data<T>(ctx.GetPlace()),
param.numel());
if (r == xpu::Error_t::INVALID_PARAM) {
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument(
"XPU kernel error of RmspropOp, error message: INVALID_PARAM,
"
"please check your input & output."));
} else if (r == xpu::Error_t::RUNTIME_ERROR) {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::Unavailable(
"XPU kernel error of RmspropOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."));
} else if (r == xpu::Error_t::NO_ENOUGH_WORKSPACE) {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::ResourceExhausted(
"XPU kernel error of RmspropOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."));
} else {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::ResourceExhausted(
"XPU kernel error of RmspropOp, error "
"message: OTHER "
"XPU API returns error code: %d.",
r));
}
***/
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
rmsprop
,
ops
::
RmspropOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
//
namespace ops = paddle::operators;
//
REGISTER_OP_XPU_KERNEL(
//
rmsprop,
//
ops::RmspropOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
paddle/fluid/operators/optimizers/sgd_op_xpu.cc
浏览文件 @
7b828f71
...
...
@@ -14,11 +14,15 @@ limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/optimizers/sgd_op.h"
#include <string>
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
SGDOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
...
...
@@ -48,40 +52,31 @@ class SGDOpXPUKernel : public framework::OpKernel<T> {
"numel = [%s], ParamOut's numel = [%s]"
,
grad
->
numel
(),
sz
));
const
T
*
lr
=
learning_rate
->
data
<
T
>
();
const
T
*
lr_t
=
learning_rate
->
data
<
T
>
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
const
float
*
lr
=
nullptr
;
if
(
std
::
is_same
<
T
,
paddle
::
platform
::
float16
>::
value
)
{
float
*
lr_float
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
learning_rate
->
numel
());
int
r
=
xpu
::
cast_v2
<
XPUType
,
float
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
lr_t
),
lr_float
,
learning_rate
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
lr
=
lr_float
;
}
else
{
lr
=
reinterpret_cast
<
const
float
*>
(
lr_t
);
}
const
T
*
param_data
=
param
->
data
<
T
>
();
const
T
*
grad_data
=
grad
->
data
<
T
>
();
T
*
out_data
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
sgd
(
dev_ctx
.
x_context
(),
sz
,
grad_data
,
param_data
,
lr
,
out_data
);
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of SgdOp, error message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of SgdOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of SgdOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."
));
}
}
else
{
PADDLE_ENFORCE_EQ
(
false
,
true
,
platform
::
errors
::
PermissionDenied
(
"Unsupported Variable Type of Param & Grad in "
"SgdOp-XPU. Excepted "
"LodTensor, But received [%s] and [%s]"
,
paddle
::
framework
::
ToTypeName
(
param_var
->
Type
())));
int
r
=
xpu
::
sgd
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
grad_data
),
reinterpret_cast
<
const
XPUType
*>
(
param_data
),
lr
,
reinterpret_cast
<
XPUType
*>
(
out_data
),
sz
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sgd"
);
}
}
};
...
...
@@ -90,6 +85,8 @@ class SGDOpXPUKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
sgd
,
ops
::
SGDOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
sgd
,
ops
::
SGDOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
SGDOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
plat
::
float16
>
);
#endif
paddle/fluid/platform/device/xpu/xpu1_op_list.h
浏览文件 @
7b828f71
...
...
@@ -145,7 +145,6 @@ XPUOpMap& get_kl1_ops() {
{
"hard_switch"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"iou_similarity"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"lamb"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"layer_norm_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"layer_norm"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
...
...
@@ -175,9 +174,6 @@ XPUOpMap& get_kl1_ops() {
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"log_loss_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"log_loss"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"logsumexp"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"log"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"lookup_table_v2_grad"
,
...
...
@@ -236,7 +232,6 @@ XPUOpMap& get_kl1_ops() {
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
BOOL
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rmsprop"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"roi_align_grad"
,
...
...
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
7b828f71
...
...
@@ -328,6 +328,8 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
())})},
{
"scatter"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"sgd"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"sigmoid_cross_entropy_with_logits_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"sigmoid_cross_entropy_with_logits"
,
...
...
python/paddle/fluid/tests/unittests/xpu/test_accuracy_op_xpu.py
浏览文件 @
7b828f71
...
...
@@ -23,41 +23,52 @@ import paddle.fluid as fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUAccuracyOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"accuracy"
self
.
init_dtype
()
n
=
8192
infer
=
np
.
random
.
random
((
n
,
1
)).
astype
(
self
.
dtype
)
indices
=
np
.
random
.
randint
(
0
,
2
,
(
n
,
1
)).
astype
(
'int64'
)
label
=
np
.
random
.
randint
(
0
,
2
,
(
n
,
1
)).
astype
(
'int64'
)
self
.
inputs
=
{
'Out'
:
infer
,
'Indices'
:
indices
,
"Label"
:
label
}
num_correct
=
0
for
rowid
in
range
(
n
):
for
ele
in
indices
[
rowid
]:
if
ele
==
label
[
rowid
]:
num_correct
+=
1
break
self
.
outputs
=
{
'Accuracy'
:
np
.
array
([
num_correct
/
float
(
n
)]).
astype
(
self
.
dtype
),
'Correct'
:
np
.
array
([
num_correct
]).
astype
(
"int32"
),
'Total'
:
np
.
array
([
n
]).
astype
(
"int32"
)
}
self
.
attrs
=
{
'use_xpu'
:
True
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
class
XPUTestAccuracyOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'accuracy'
self
.
use_dynamic_create_class
=
False
class
TestXPUAccuracyOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"accuracy"
self
.
init_dtype
()
n
=
8192
infer
=
np
.
random
.
random
((
n
,
1
)).
astype
(
self
.
dtype
)
indices
=
np
.
random
.
randint
(
0
,
2
,
(
n
,
1
)).
astype
(
'int64'
)
label
=
np
.
random
.
randint
(
0
,
2
,
(
n
,
1
)).
astype
(
'int64'
)
self
.
inputs
=
{
'Out'
:
infer
,
'Indices'
:
indices
,
"Label"
:
label
}
num_correct
=
0
for
rowid
in
range
(
n
):
for
ele
in
indices
[
rowid
]:
if
ele
==
label
[
rowid
]:
num_correct
+=
1
break
self
.
outputs
=
{
'Accuracy'
:
np
.
array
([
num_correct
/
float
(
n
)]).
astype
(
self
.
dtype
),
'Correct'
:
np
.
array
([
num_correct
]).
astype
(
"int32"
),
'Total'
:
np
.
array
([
n
]).
astype
(
"int32"
)
}
self
.
attrs
=
{
'use_xpu'
:
True
}
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
support_types
=
get_xpu_op_support_types
(
'accuracy'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestAccuracyOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py
浏览文件 @
7b828f71
...
...
@@ -25,30 +25,43 @@ import paddle.fluid as fluid
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
class
TestSGDOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sgd"
self
.
conf
()
w
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
"float32"
)
g
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
"float32"
)
lr
=
np
.
array
([
0.1
]).
astype
(
"float32"
)
self
.
inputs
=
{
'Param'
:
w
,
'Grad'
:
g
,
'LearningRate'
:
lr
}
self
.
outputs
=
{
'ParamOut'
:
w
-
lr
*
g
}
class
XPUTestSgdOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'sgd'
self
.
use_dynamic_create_class
=
False
def
conf
(
self
):
self
.
h
=
102
self
.
w
=
105
class
TestSGDOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sgd"
self
.
dtype
=
self
.
in_type
self
.
conf
()
w
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
self
.
dtype
)
g
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
self
.
dtype
)
lr
=
np
.
array
([
0.1
]).
astype
(
self
.
dtype
)
def
test_check_output_with_place
(
self
):
self
.
check_output_with_place
(
paddle
.
XPUPlace
(
0
))
self
.
inputs
=
{
'Param'
:
w
,
'Grad'
:
g
,
'LearningRate'
:
lr
}
self
.
outputs
=
{
'ParamOut'
:
w
-
lr
*
g
}
def
conf
(
self
):
self
.
h
=
102
self
.
w
=
105
class
TestSGDOpCase8X
(
TestSGDOp
):
def
conf
(
self
):
self
.
h
=
10
self
.
w
=
64
def
test_check_output_with_place
(
self
):
self
.
check_output_with_place
(
paddle
.
XPUPlace
(
0
))
class
TestSGDOpCase8X
(
TestSGDOp
):
def
conf
(
self
):
self
.
h
=
10
self
.
w
=
64
support_types
=
get_xpu_op_support_types
(
'sgd'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestSgdOp
,
stype
)
class
TestSGDOpWithLargeInput
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录