Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7b5a8e46
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7b5a8e46
编写于
11月 25, 2020
作者:
W
Wojciech Uss
提交者:
GitHub
11月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi_gru_fuse_pass and tests (#28601)
* Add multi_gru_fuse_pass and tests * fix date * cleaned up headers
上级
bb16c251
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
403 addition
and
5 deletion
+403
-5
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+51
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+23
-0
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.cc
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.cc
+123
-0
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.h
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.h
+42
-0
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass_tester.cc
...e/fluid/framework/ir/mkldnn/multi_gru_fuse_pass_tester.cc
+156
-0
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.cc
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.cc
+5
-5
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
7b5a8e46
...
...
@@ -111,6 +111,7 @@ if(WITH_MKLDNN)
pass_library
(
reshape_transpose_matmul_mkldnn_fuse_pass inference DIR mkldnn
)
pass_library
(
matmul_transpose_reshape_fuse_pass inference DIR mkldnn
)
pass_library
(
batch_norm_act_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_seq_fuse_pass inference DIR mkldnn
)
endif
()
...
...
@@ -170,5 +171,6 @@ endif()
cc_test
(
test_matmul_transpose_reshape_fuse_pass SRCS mkldnn/matmul_transpose_reshape_fuse_pass_tester.cc DEPS matmul_transpose_reshape_fuse_pass
)
cc_test
(
test_cpu_bfloat16_placement_pass SRCS mkldnn/cpu_bfloat16_placement_pass_tester.cc DEPS cpu_bfloat16_placement_pass
)
cc_test
(
test_cpu_bfloat16_pass SRCS mkldnn/cpu_bfloat16_pass_tester.cc DEPS cpu_bfloat16_pass
)
cc_test
(
test_multi_gru_fuse_pass SRCS mkldnn/multi_gru_fuse_pass_tester.cc DEPS multi_gru_fuse_pass
)
cc_test
(
test_multi_gru_seq_fuse_pass SRCS mkldnn/multi_gru_seq_fuse_pass_tester.cc DEPS multi_gru_seq_fuse_pass
)
endif
()
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
7b5a8e46
...
...
@@ -2511,6 +2511,57 @@ PDNode *patterns::FusionGru::operator()() {
return
out
;
}
PDNode
*
patterns
::
TwoFusionGruConcat
::
operator
()()
{
auto
x
=
pattern
->
NewNode
(
x_repr
())
->
AsInput
()
->
assert_is_op_input
(
"fusion_gru"
,
"X"
);
auto
gru1
=
pattern
->
NewNode
(
gru1_repr
())
->
assert_is_op
(
"fusion_gru"
)
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"is_reverse"
)
==
false
;
});
auto
gru2
=
pattern
->
NewNode
(
gru2_repr
())
->
assert_is_op
(
"fusion_gru"
)
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"is_reverse"
)
==
true
;
});
auto
wh1
=
pattern
->
NewNode
(
wh1_repr
())
->
AsInput
()
->
assert_is_op_input
(
"fusion_gru"
,
"WeightH"
);
auto
wh2
=
pattern
->
NewNode
(
wh2_repr
())
->
AsInput
()
->
assert_is_op_input
(
"fusion_gru"
,
"WeightH"
);
auto
wx1
=
pattern
->
NewNode
(
wx1_repr
())
->
AsInput
()
->
assert_is_op_input
(
"fusion_gru"
,
"WeightX"
);
auto
wx2
=
pattern
->
NewNode
(
wx2_repr
())
->
AsInput
()
->
assert_is_op_input
(
"fusion_gru"
,
"WeightX"
);
auto
b1
=
pattern
->
NewNode
(
b1_repr
())
->
AsInput
()
->
assert_is_op_input
(
"fusion_gru"
,
"Bias"
);
auto
b2
=
pattern
->
NewNode
(
b2_repr
())
->
AsInput
()
->
assert_is_op_input
(
"fusion_gru"
,
"Bias"
);
auto
h1
=
pattern
->
NewNode
(
h1_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"fusion_gru"
,
"Hidden"
)
->
assert_is_op_input
(
"concat"
)
->
AsIntermediate
();
auto
h2
=
pattern
->
NewNode
(
h2_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"fusion_gru"
,
"Hidden"
)
->
assert_is_op_input
(
"concat"
)
->
AsIntermediate
();
auto
concat
=
pattern
->
NewNode
(
concat_repr
())
->
assert_is_op
(
"concat"
);
auto
out
=
pattern
->
NewNode
(
out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"concat"
,
"Out"
);
gru1
->
LinksFrom
({
x
,
wh1
,
wx1
,
b1
}).
LinksTo
({
h1
});
gru2
->
LinksFrom
({
x
,
wh2
,
wx2
,
b2
}).
LinksTo
({
h2
});
concat
->
LinksFrom
({
h1
,
h2
}).
LinksTo
({
out
});
return
out
;
}
PDNode
*
patterns
::
MultiGruSeq
::
operator
()()
{
auto
x
=
pattern
->
NewNode
(
x_repr
())
->
AsInput
()
->
assert_is_op_input
(
"multi_gru"
,
"X"
);
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
7b5a8e46
...
...
@@ -1420,6 +1420,29 @@ struct FusionGru : public PatternBase {
PATTERN_DECL_NODE
(
out
);
};
// two concatenated fusion_gru ops
// Forward pass for fusion of two concatenated fusion_gru ops.
// concat_out is a result of the operator().
struct
TwoFusionGruConcat
:
public
PatternBase
{
TwoFusionGruConcat
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"bi_fusion_gru"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
x
);
PATTERN_DECL_NODE
(
gru1
);
PATTERN_DECL_NODE
(
gru2
);
PATTERN_DECL_NODE
(
wh1
);
PATTERN_DECL_NODE
(
wh2
);
PATTERN_DECL_NODE
(
wx1
);
PATTERN_DECL_NODE
(
wx2
);
PATTERN_DECL_NODE
(
b1
);
PATTERN_DECL_NODE
(
b2
);
PATTERN_DECL_NODE
(
h1
);
PATTERN_DECL_NODE
(
h2
);
PATTERN_DECL_NODE
(
concat
);
PATTERN_DECL_NODE
(
out
);
};
// two subsequent bi_fusion_gru ops
// Forward pass for fusion of two subsequent fusion_gru ops.
// Hidden of the last fusion_gru op is a result of the operator().
...
...
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.cc
0 → 100644
浏览文件 @
7b5a8e46
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.h"
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
double
,
Eigen
::
Dynamic
,
1
>>
;
using
string
::
PrettyLogDetail
;
namespace
{
std
::
vector
<
std
::
string
>
JoinInputs
(
Node
*
op1
,
Node
*
op2
,
std
::
string
input_name
)
{
auto
in1
=
op1
->
Op
()
->
Input
(
input_name
);
auto
&
in2
=
op2
->
Op
()
->
Input
(
input_name
);
in1
.
insert
(
in1
.
end
(),
in2
.
begin
(),
in2
.
end
());
return
in1
;
}
}
// namespace
void
MultiGRUFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"Fusing two concatenated multi_gru ops."
;
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Pointer to graph argument cannot be NULL."
));
FusePassBase
::
Init
(
name_scope_
,
graph
);
PADDLE_ENFORCE_NOT_NULL
(
param_scope
(),
platform
::
errors
::
InvalidArgument
(
"Scope cannot be nullptr."
));
GraphPatternDetector
gpd
;
patterns
::
TwoFusionGruConcat
pattern
{
gpd
.
mutable_pattern
(),
name_scope_
};
pattern
();
int
fused_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
x
,
x
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
gru1
,
gru1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
gru2
,
gru2
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wh1
,
wh1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wh2
,
wh2
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wx1
,
wx1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wx2
,
wx2
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
b1
,
b1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
b2
,
b2
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
h1
,
h1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
h2
,
h2
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
concat
,
concat
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
out
,
out
,
pattern
);
if
(
gru1
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"origin_mode"
)
!=
gru2
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"origin_mode"
))
{
LOG
(
INFO
)
<<
"The two fusion_gru ops have different values of the "
"origin_mode attribute. Skipping fuse."
;
return
;
}
auto
wx
=
JoinInputs
(
gru1
,
gru2
,
"WeightX"
);
auto
wh
=
JoinInputs
(
gru1
,
gru2
,
"WeightH"
);
auto
b
=
JoinInputs
(
gru1
,
gru2
,
"Bias"
);
OpDesc
multi_gru_desc
;
multi_gru_desc
.
SetType
(
"multi_gru"
);
multi_gru_desc
.
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
x
->
Name
()}));
multi_gru_desc
.
SetInput
(
"WeightX"
,
wx
);
multi_gru_desc
.
SetInput
(
"WeightH"
,
wh
);
multi_gru_desc
.
SetInput
(
"Bias"
,
b
);
multi_gru_desc
.
SetOutput
(
"Hidden"
,
std
::
vector
<
std
::
string
>
({
out
->
Name
()}));
auto
attrs_to_skip
=
{
"is_reverse"
,
"use_seq"
};
for
(
auto
&
attr
:
gru1
->
Op
()
->
GetAttrMap
())
{
if
(
std
::
find
(
attrs_to_skip
.
begin
(),
attrs_to_skip
.
end
(),
attr
.
first
)
==
attrs_to_skip
.
end
())
multi_gru_desc
.
SetAttr
(
attr
.
first
,
attr
.
second
);
}
multi_gru_desc
.
SetAttr
(
"layers"
,
1
);
auto
multi_gru
=
g
->
CreateOpNode
(
&
multi_gru_desc
);
// OpDesc will be copied.
IR_NODE_LINK_TO
(
x
,
multi_gru
);
IR_NODE_LINK_TO
(
b1
,
multi_gru
);
IR_NODE_LINK_TO
(
b2
,
multi_gru
);
IR_NODE_LINK_TO
(
wh1
,
multi_gru
);
IR_NODE_LINK_TO
(
wh2
,
multi_gru
);
IR_NODE_LINK_TO
(
wx1
,
multi_gru
);
IR_NODE_LINK_TO
(
wx2
,
multi_gru
);
IR_NODE_LINK_TO
(
multi_gru
,
out
);
GraphSafeRemoveNodes
(
graph
,
{
gru1
,
gru2
,
h1
,
h2
,
concat
});
++
fused_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
fused_count
);
PrettyLogDetail
(
"--- fused %d pairs of concatenated multi_gru ops"
,
fused_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
multi_gru_fuse_pass
,
paddle
::
framework
::
ir
::
MultiGRUFusePass
);
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.h
0 → 100644
浏览文件 @
7b5a8e46
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// This pass fuses two concatenated fusion_gru ops into a single multi_gru op.
// It turns
// a -> fusion_gru -> c -> concat -> e
// \> fusion_gru -> d /
// into
// a -> multi_gru -> e
class
MultiGRUFusePass
:
public
FusePassBase
{
public:
virtual
~
MultiGRUFusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
const
std
::
string
name_scope_
{
"multi_gru"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass_tester.cc
0 → 100644
浏览文件 @
7b5a8e46
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/multi_gru_fuse_pass.h"
#include <gtest/gtest.h>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
,
bool
is_reverse
=
false
,
bool
origin_mode
=
false
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
if
(
type
==
"fusion_gru"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetInput
(
"WeightX"
,
{
inputs
[
1
]});
op
->
SetInput
(
"WeightH"
,
{
inputs
[
2
]});
op
->
SetInput
(
"Bias"
,
{
inputs
[
3
]});
op
->
SetOutput
(
"Hidden"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"is_reverse"
,
is_reverse
);
op
->
SetAttr
(
"origin_mode"
,
origin_mode
);
}
else
if
(
type
==
"concat"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
],
inputs
[
1
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
else
{
FAIL
()
<<
"Unexpected operator type."
;
}
}
static
const
std
::
initializer_list
<
std
::
string
>
variable_names
=
{
"x"
,
"wx1"
,
"wx2"
,
"wh1"
,
"wh2"
,
"b1"
,
"b2"
,
"h1"
,
"h2"
,
"out"
};
// (x, wx1, wh1, b1) -> fusion_gru1 -> h1
// (x, wx2, wh2, b2) -> fusion_gru2 -> h2
// (h1, h2) -> concat -> out
ProgramDesc
BuildProgramDesc
(
bool
origin_mode1
,
bool
origin_mode2
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"fusion_gru"
,
{
"x"
,
"wx1"
,
"wh1"
,
"b1"
},
{
"h1"
},
false
,
origin_mode1
);
SetOp
(
&
prog
,
"fusion_gru"
,
{
"x"
,
"wx2"
,
"wh2"
,
"b2"
},
{
"h2"
},
true
,
origin_mode2
);
SetOp
(
&
prog
,
"concat"
,
{
"h1"
,
"h2"
},
{
"out"
});
return
prog
;
}
void
MainTest
(
const
ProgramDesc
&
prog
,
int
removed_nodes_count
,
int
added_nodes_count
,
const
std
::
vector
<
std
::
string
>
multi_gru_inputs
,
const
std
::
string
multi_gru_output
,
bool
origin_mode
)
{
// Apply pass
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
Scope
scope
;
graph
->
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"multi_gru_fuse_pass"
);
graph
.
reset
(
pass
->
Apply
(
graph
.
release
()));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
// Verify graph after fuse
int
count_multi_gru
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
Type
()
==
"multi_gru"
)
{
EXPECT_EQ
(
op
->
Input
(
"X"
)[
0
],
multi_gru_inputs
[
0
]);
EXPECT_EQ
(
op
->
Input
(
"WeightX"
).
size
(),
2u
);
EXPECT_EQ
(
op
->
Input
(
"WeightX"
)[
0
],
multi_gru_inputs
[
1
]);
EXPECT_EQ
(
op
->
Input
(
"WeightX"
)[
1
],
multi_gru_inputs
[
2
]);
EXPECT_EQ
(
op
->
Input
(
"WeightH"
).
size
(),
2u
);
EXPECT_EQ
(
op
->
Input
(
"WeightH"
)[
0
],
multi_gru_inputs
[
3
]);
EXPECT_EQ
(
op
->
Input
(
"WeightH"
)[
1
],
multi_gru_inputs
[
4
]);
EXPECT_EQ
(
op
->
Input
(
"Bias"
).
size
(),
2u
);
EXPECT_EQ
(
op
->
Input
(
"Bias"
)[
0
],
multi_gru_inputs
[
5
]);
EXPECT_EQ
(
op
->
Input
(
"Bias"
)[
1
],
multi_gru_inputs
[
6
]);
EXPECT_EQ
(
op
->
Output
(
"Hidden"
)[
0
],
multi_gru_output
);
EXPECT_EQ
(
op
->
GetAttrIfExists
<
int
>
(
"layers"
),
1
);
EXPECT_EQ
(
op
->
GetAttrIfExists
<
bool
>
(
"origin_mode"
),
origin_mode
);
++
count_multi_gru
;
}
}
}
EXPECT_EQ
(
original_nodes_num
-
removed_nodes_count
+
added_nodes_count
,
current_nodes_num
);
EXPECT_EQ
(
count_multi_gru
,
added_nodes_count
);
}
TEST
(
MultiGruFusePass
,
same_origin_modes_1
)
{
bool
origin_mode1
=
false
;
bool
origin_mode2
=
false
;
// nodes to be removed: 2x fusion_gru + 2x hidden(output) + concat
const
int
removed_nodes_count
=
5
;
// nodes to be added: multi_gru
const
int
added_nodes_count
=
1
;
const
std
::
initializer_list
<
std
::
string
>
multi_gru_inputs
=
{
"x"
,
"wx1"
,
"wx2"
,
"wh1"
,
"wh2"
,
"b1"
,
"b2"
};
MainTest
(
BuildProgramDesc
(
origin_mode1
,
origin_mode2
),
removed_nodes_count
,
added_nodes_count
,
multi_gru_inputs
,
"out"
,
origin_mode1
);
}
TEST
(
MultiGruFusePass
,
same_origin_modes_2
)
{
bool
origin_mode1
=
true
;
bool
origin_mode2
=
true
;
// nodes to be removed: 2x fusion_gru + 2x hidden(output) + concat
const
int
removed_nodes_count
=
5
;
// nodes to be added: multi_gru
const
int
added_nodes_count
=
1
;
const
std
::
initializer_list
<
std
::
string
>
multi_gru_inputs
=
{
"x"
,
"wx1"
,
"wx2"
,
"wh1"
,
"wh2"
,
"b1"
,
"b2"
};
MainTest
(
BuildProgramDesc
(
origin_mode1
,
origin_mode2
),
removed_nodes_count
,
added_nodes_count
,
multi_gru_inputs
,
"out"
,
origin_mode1
);
}
TEST
(
MultiGruFusePass
,
different_origin_modes
)
{
bool
origin_mode1
=
true
;
bool
origin_mode2
=
false
;
// the fuse should not be applied, so
// nodes to be removed: none
const
int
removed_nodes_count
=
0
;
// nodes to be added: none
const
int
added_nodes_count
=
0
;
const
std
::
initializer_list
<
std
::
string
>
multi_gru_inputs
=
{
"x"
,
"wx1"
,
"wx2"
,
"wh1"
,
"wh2"
,
"b1"
,
"b2"
};
MainTest
(
BuildProgramDesc
(
origin_mode1
,
origin_mode2
),
removed_nodes_count
,
added_nodes_count
,
multi_gru_inputs
,
"out"
,
origin_mode1
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
multi_gru_fuse_pass
);
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.cc
浏览文件 @
7b5a8e46
...
...
@@ -32,8 +32,8 @@ using string::PrettyLogDetail;
namespace
{
std
::
vector
<
std
::
string
>
join_i
nputs
(
Node
*
op1
,
Node
*
op2
,
std
::
string
input_name
)
{
std
::
vector
<
std
::
string
>
JoinI
nputs
(
Node
*
op1
,
Node
*
op2
,
std
::
string
input_name
)
{
auto
in1
=
op1
->
Op
()
->
Input
(
input_name
);
auto
&
in2
=
op2
->
Op
()
->
Input
(
input_name
);
in1
.
insert
(
in1
.
end
(),
in2
.
begin
(),
in2
.
end
());
...
...
@@ -83,9 +83,9 @@ void MultiGruSeqFusePass::ApplyImpl(ir::Graph* graph) const {
return
;
}
auto
wx
=
join_i
nputs
(
gru1
,
gru2
,
"WeightX"
);
auto
wh
=
join_i
nputs
(
gru1
,
gru2
,
"WeightH"
);
auto
b
=
join_i
nputs
(
gru1
,
gru2
,
"Bias"
);
auto
wx
=
JoinI
nputs
(
gru1
,
gru2
,
"WeightX"
);
auto
wh
=
JoinI
nputs
(
gru1
,
gru2
,
"WeightH"
);
auto
b
=
JoinI
nputs
(
gru1
,
gru2
,
"Bias"
);
OpDesc
multi_gru_desc
;
multi_gru_desc
.
SetType
(
"multi_gru"
);
...
...
tools/static_mode_white_list.py
浏览文件 @
7b5a8e46
...
...
@@ -603,6 +603,7 @@ STATIC_MODE_TESTING_LIST = [
'test_matmul_bf16_mkldnn_op'
,
'test_mul_int8_mkldnn_op'
,
'test_multi_gru_mkldnn_op'
,
'test_multi_gru_fuse_pass'
,
'test_multi_gru_seq_fuse_pass'
,
'test_pool2d_int8_mkldnn_op'
,
'test_pool2d_mkldnn_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录