未验证 提交 7b53923e 编写于 作者: L Li-fAngyU 提交者: GitHub

【PaddlePaddle Hackathon 4 NO.23】为 Paddle 新增 vander API (#51048)

上级 77d24854
...@@ -294,6 +294,7 @@ from .tensor.math import take # noqa: F401 ...@@ -294,6 +294,7 @@ from .tensor.math import take # noqa: F401
from .tensor.math import frexp # noqa: F401 from .tensor.math import frexp # noqa: F401
from .tensor.math import trapezoid # noqa: F401 from .tensor.math import trapezoid # noqa: F401
from .tensor.math import cumulative_trapezoid # noqa: F401 from .tensor.math import cumulative_trapezoid # noqa: F401
from .tensor.math import vander # noqa: F401
from .tensor.random import bernoulli # noqa: F401 from .tensor.random import bernoulli # noqa: F401
from .tensor.random import poisson # noqa: F401 from .tensor.random import poisson # noqa: F401
...@@ -687,4 +688,5 @@ __all__ = [ # noqa ...@@ -687,4 +688,5 @@ __all__ = [ # noqa
'trapezoid', 'trapezoid',
'cumulative_trapezoid', 'cumulative_trapezoid',
'polar', 'polar',
'vander',
] ]
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from paddle.fluid import core
np.random.seed(10)
def ref_vander(x, N=None, increasing=False):
return np.vander(x, N, increasing)
class TestVanderAPI(unittest.TestCase):
# test paddle.tensor.math.vander
def setUp(self):
self.shape = [5]
self.x = np.random.uniform(-1, 1, self.shape).astype(np.float32)
self.place = (
paddle.CUDAPlace(0)
if core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
def api_case(self, N=None, increasing=False):
paddle.enable_static()
out_ref = ref_vander(self.x, N, increasing)
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', self.shape)
out = paddle.vander(x, N, increasing)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x}, fetch_list=[out])
if N != 0:
np.testing.assert_allclose(res[0], out_ref, rtol=1e-05)
else:
np.testing.assert_allclose(res[0].size, out_ref.size, rtol=1e-05)
paddle.disable_static(self.place)
x = paddle.to_tensor(self.x)
out = paddle.vander(x, N, increasing)
np.testing.assert_allclose(out.numpy(), out_ref, rtol=1e-05)
paddle.enable_static()
def test_api(self):
self.api_case()
N = list(range(9))
for n in N:
self.api_case(n)
self.api_case(n, increasing=True)
def test_complex(self):
paddle.disable_static(self.place)
real = np.random.rand(5)
imag = np.random.rand(5)
complex_np = real + 1j * imag
complex_paddle = paddle.complex(
paddle.to_tensor(real), paddle.to_tensor(imag)
)
def test_api_case(N, increasing=False):
for n in N:
res_np = np.vander(complex_np, n, increasing)
res_paddle = paddle.vander(complex_paddle, n, increasing)
np.testing.assert_allclose(
res_paddle.numpy(), res_np, rtol=1e-05
)
N = [0, 1, 2, 3, 4]
test_api_case(N)
test_api_case(N, increasing=True)
paddle.enable_static()
def test_errors(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
self.assertRaises(TypeError, paddle.vander, 1)
x = paddle.static.data('X', [10, 12], 'int32')
self.assertRaises(ValueError, paddle.vander, x)
x1 = paddle.static.data('X1', [10], 'int32')
self.assertRaises(ValueError, paddle.vander, x1, n=-1)
if __name__ == "__main__":
unittest.main()
...@@ -250,6 +250,7 @@ from .math import trapezoid # noqa: F401 ...@@ -250,6 +250,7 @@ from .math import trapezoid # noqa: F401
from .math import cumulative_trapezoid # noqa: F401 from .math import cumulative_trapezoid # noqa: F401
from .math import sigmoid # noqa: F401 from .math import sigmoid # noqa: F401
from .math import sigmoid_ # noqa: F401 from .math import sigmoid_ # noqa: F401
from .math import vander # noqa: F401
from .random import multinomial # noqa: F401 from .random import multinomial # noqa: F401
from .random import standard_normal # noqa: F401 from .random import standard_normal # noqa: F401
...@@ -538,6 +539,7 @@ tensor_method_func = [ # noqa ...@@ -538,6 +539,7 @@ tensor_method_func = [ # noqa
'polar', 'polar',
'sigmoid', 'sigmoid',
'sigmoid_', 'sigmoid_',
'vander',
] ]
# this list used in math_op_patch.py for magic_method bind # this list used in math_op_patch.py for magic_method bind
......
...@@ -5333,3 +5333,79 @@ def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None): ...@@ -5333,3 +5333,79 @@ def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
# [3.50000000, 8. ]]) # [3.50000000, 8. ]])
""" """
return _trapezoid(y, x, dx, axis, mode='cumsum') return _trapezoid(y, x, dx, axis, mode='cumsum')
def vander(x, n=None, increasing=False, name=None):
"""
Generate a Vandermonde matrix.
The columns of the output matrix are powers of the input vector. Order of the powers is
determined by the increasing Boolean parameter. Specifically, when the increment is
"false", the ith output column is a step-up in the order of the elements of the input
vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
is named after Alexandre-Theophile Vandermonde.
Args:
x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1., 2., 3.], dtype="float32")
out = paddle.vander(x)
print(out.numpy())
# [[1., 1., 1.],
# [4., 2., 1.],
# [9., 3., 1.]]
out1 = paddle.vander(x,2)
print(out1.numpy())
# [[1., 1.],
# [2., 1.],
# [3., 1.]]
out2 = paddle.vander(x, increasing = True)
print(out2.numpy())
# [[1., 1., 1.],
# [1., 2., 4.],
# [1., 3., 9.]]
real = paddle.to_tensor([2., 4.])
imag = paddle.to_tensor([1., 3.])
complex = paddle.complex(real, imag)
out3 = paddle.vander(complex)
print(out3.numpy())
# [[2.+1.j, 1.+0.j],
# [4.+3.j, 1.+0.j]]
"""
check_variable_and_dtype(
x,
'x',
['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
'vander',
)
if x.dim() != 1:
raise ValueError(
"The input of x is expected to be a 1-D Tensor."
"But now the dims of Input(X) is %d." % x.dim()
)
if n is None:
n = x.shape[0]
if n < 0:
raise ValueError("N must be non-negative.")
res = paddle.empty([x.shape[0], n], dtype=x.dtype)
if n > 0:
res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
if n > 1:
res[:, 1:] = x[:, None]
res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
res = res[:, ::-1] if not increasing else res
return res
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册